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Abstract

Turbulence displays a rich caleidoscope of phenomena reminiscent of a new thermodynamic phase of fluid flows.
The kinetic theory of gases inspired, for instance, Prandtl’s mixing layer theory for the estimation of the eddy vis-
cosity. Intriguingly, fully developed grid turbulence is experimentally observed to give rise to vortices following a
Maxwell-Boltzmann distribution. In addition, the onset of turbulence has features of a phase transition. In this talk,
we recapitulate and elaborate the analogy of turbulence as a thermodynamic phase of fluid motion in order to motivate
open research questions.

1) Temperatures and energy distributions in thermodynamics
Thermodynamics describes how matter can appear in different phases, like solid, liquid, gaseous, and plasma. Tran-
sition from one phase to another occurs when the temperature T is increased and the phase change energy ∆L is
introduced. For instance, water turns into steam when the heat of vaporization LV = 2257kJ/kg is added to water at
T = 373K◦. Temperature is a macroscopic expression of the microscopic random motion of the atoms or molecules
(mass m) that fly around and interact by collisions. These random velocities of the molecules can be described
in many cases (called thermal equilibrium) by the famous Maxwell-Boltzmann distribution. The random velocities
imply a distribution of random kinetic energies, so that a velocity distribution can also be converted into an energy
distribution, as illustrated in Fig.1a for two different temperatures.

Figure 1: Molecular energy distributions for gases at 2 different temperatures, and thermal energy of air; (b) Tem-
perature change due to (1) input from electrical sparc, (2) heat Q, (3) work W , or (4) eating; (c) Shear fields at
Re < Re∗ (laminar), and Re > Re∗ (turbulent) eddy with rotation induced p.

Generally speaking the temperature T is a measure for the average kinetic energy of the molecules, and T can
be increased by some amount ∆T through the input of work ∆W , or by the injection of heat ∆Q, when an object
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is brought into thermal contact to a hotter object, as indicated in Fig. 1b. Thus, the temperature is a macroscopic
parameter measuring the energy of the microscopic random motion.

2) New internal energies and energy distributions in turbulent fluid — the features
of a new phase
Matter in all phases possesses internal energies, U , partly related to the energies of the microscopic molecular motion,
and partly hidden as structural energies. In addition, some macroscopic segments of matter of mass m, like a cloud
moving through the sky, or water flowing in a river also can have macroscopic velocities u(x, t) that give each volume
element of mass m the macroscopic kinetic energy EK = m‖u‖2/2. For such motion, one must always specify the
reference system in which the motion is measured. So, for instance, a glass of water of mass mW sitting in a train
that moves at the speed uT , carries no kinetic energy for an experiment performed in the train, but will dump the
kinetic energy mWuT /2 onto a spectator seeing the train pass by when the water is tossed out of the window.

In contrast, the internal energy U of a medium does not depend on the reference system in which the matter is
observed. When the temperature of a medium is raised by the input of energy, its internal energy increases. There are
additional components to the internal energy, namely (a) the phase change energy [1], or (b) — of particular concern
here — the energies residing in the structures of turbulent flow. These components are neither associated with a
change of temperature ∆T , nor the speed of the reference system against which the flow is measured, and must be
counted as a part of the internal energy — thus giving individual phases their unique identities.

Laminar flow carries translational kinetic energy, but when the flow turns turbulent at Re > Re∗, it acquires
eddies which carry two new forms of internal energy: rotational kinetic energy , EKR, which resides in every newly
formed eddy, and an equal amount of coherence energy [2], EC residing in the pressure defect-volume work of every
eddy, see Fig.1c. Both forms of energy are extracted out of the kinetic energy from the parent laminar flow in which
the turbulence evolved.

While the translational kinetic energy EKT of the parent laminar flow depends on the velocity Uref of the refer-
ence system against which the flow was measured, neither EKR nor EC is a function of the speed of Uref . Therefore
EKR andEC must be counted as part of the internal energy, giving turbulent fluid the distinct features of a new phase.
Thus, we consider the turbulent ”state” as the dynamic phase of fluid motion. However, due to friction, this inter-
nal energy leaks gradually into the thermal background and is only temporarily ”parked” in the mesoscopic energy
range, between the microscopic molecular motion, and the macroscopic pressure - volume work. The macroscopic
thermodynamic parameters like p and T have their roots in the microscopic energy distribution of their constituent
molecules, e.g. a Maxwell-Boltzmann distribution. We noted many years ago [3] that the ”mesoscopic” eddies of
turbulence, also possess energy distributions, reminding of a Maxwell-Boltzmann distribution. These results are
repeated here, showing the apparatus (Fig. 1a), eddy energy distributions for different distances from the grid, as
extracted from photo sequences like Fig. 2c,d. At the grid speed U = 20cm/sec, the distance X = 190cm corre-
sponds to ∆t = 9.5sec after starting the turbulence. Clearly, the eddies ”cool” as they lose energy into the thermal
background.

(a)

(b) (c,d)

Figure 2 (a) Apparatus Grid bar diameter d = 1.26cm, spacing 5.08cm, moving through tank at 20cm/s. (b) Number
of eddies of radius R, as function of distance x from the grid. (c) Surface streaks exposure time ∆t = 1sec, and (d)
same surface area 3sec later.
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The new internal energies in turbulent flow may be broken up into spatial modes of a Galerkin method, generaliz-
ing spectral methods [4]. Energy modes, are well known in spectroscopy and thermodynamic, for instance electronic
excitation, or angular momentum modes in molecules. Subsequent to the excitation of such modes they revert back to
the lower energy state upon the emission of photons, which move some energy out of the system. The Galerkin modes
are originally excited by momentum input from the macroscopic range, they interact among themselves via triadic
interactions and the eventually loose all heir energy into the thermal background, thereby increasing the entropy of
the system.

3) From thermodynamics energies to questions about turbulence
Energy can show up in thermodynamics on very different scales: (a) As particle energy inside atomic nuclei, (b) as
atomic excitation in atoms or molecules, (c) as microscopic kinetic energy of the random motion in gases, or (d) as
pressure volume work via pV = µRGT , and (e) macroscopic kinetic residing in flow fields. Turbulent flow with
its ”self organized” coherent structures adds additional mesoscopic internal energy on a scale that falls between the
microscopic and the macroscopic energy ranges. Numerical calculations of turbulent flows [4] show that the eddy
energy distribution is raised for the larger eddies by input from the macroscopic inhomogeneous flow field, and is
reduced on the small energy side by dissipative energy losses to the thermal background, see Fig. 3c.

Figure 3: Energy scales and fluxes (a) from particle energies to pressure p, and temperature T , (b) ”Laminar” shear
flow field with viscous dissipation, (c) shear flow leading to fully developed turbulence, with eddy energy distributions
in the mesoscopic energy range between microscopic kinetic energies, and macroscopic pdV .
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However turbulence internal energy is not ”static” like the heat of evaporation of a medium, because the energy of
the turbulent eddies is continuously degraded into heat by the actions of viscosity, that gradually increases the entropy
of the medium. We suspect that in turning turbulent shear flows reduce or even minimize their entropy production
rate β.

Fig. 3c shows turbulent flow structures in relation to the molecular and macroscopic parameters and energy scales.
Hot structures, like sparks, loose energy by radiation, and thermal conduction into other regions of space, while
turbulent fluid dissipates its energy locally into the molecular motion of its background fluid.

Here we like to explore what new insight could be gained for thermodynamics as well as for fluid flow by looking
at the thermodynamic aspects of turbulence. A number of intriguing research questions can be pursued:

1. Turbulence arising in shear flows at Re = DU/ν > Re? adds the new energy modes ETURB = EKR + EC

to the spectrum of atomic/molecular energy modes EA/M (random kinetic energies, dissociation energies,
electronic excitation -, and ionization energies). While the EA/M modes convey energy through ”photons”
(transversal E-M waves), the ETURB modes dump heat through friction into the thermal background, thereby
gradually dissipating the turbulence energies.

2. What are the thermodynamic roots of the Reynolds number Re, and what fundamental new physics occurs at
the critical Reynolds number Re∗? Is there some similarity to the boiling temperature TB , where a liquid turns
into a gas, albeit that the Reynolds number deals with angular momentum, while the temperature is an energy
parameter (fluid dynamics boiling)?

3. Describe the complete energy content of eddies (and rivers as seen in grid turbulence [3] using the mode picture,
with mode life-times, and possibly using the energy distribution half width parameter F of the eddy spectrum
(similar to the kinetic energy-defined temperature T . It should include a function of the Reynolds number.

4. Separate the power flux terms Qi of [4] into energy input from macroscopic flow and heat loss terms to the
microscopic regime —- like the induced absorption Bnm, and spontaneous transition Amn probabilities of
spectroscopy.

5. Can the energy dissipation rate for eddies Γ = dP/dt = aMb [Watt] be expressed as function of only the
eddy mass/unit length M [kg/m], and 2 unique constants a, and b, similar to the famous ”allometric” metabolic
rate of animals [5], known as the ”mouse to elephant” curve Γ [Watt] ≈ 4M [kg]3/4, which describes the
energy dissipation of animals? (Further comment: the slope b = 3/4 holds over 18 orders of magnitude:
for unicellular organisms, ectotherms, and warm blooded, only the constant differs: It is aW ≈ 4 for warm
blooded, and aC ≈ 0.3 for ectotherms!

6. Turbulence ”parks” energy temporarily in the mesoscopic range. Does it thereby also reduce (or even minimize)
the entropy production rate?

7. Heat engines convert temperature differences (reservoirs of temperatures TH and TC ) into macroscopic me-
chanical work. Can one similarly regain macroscopic (angular) momentum out of two different reservoirs
(characterized by Φ1 and Φ2 of angular momentum, and can one derive an efficiency Hmp for this process
(possibly in the form Hmp = 1−

p
Φ1/Φ2 ) similar to the thermodynamic maximum power efficiency?
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Novikov-Curzon-Ahlburn discovered that the power of an internally reversible
heat engine with two heat reservoirs and linear (irreversible) heat exchange
between the working body and reservoirs can not exceed some given maximal
power, and if an engine operates at this maximal power then the ratio of its work-
ing body’s temperatures during contacts with reservoirs must be equal to the
square root of the ratio of reservoirs’ temperatures. We proved that this result
also holds for an internally irreversible heat engine operating within inhomoge-
neous thermodynamic system of the general type (which includes multiple heat
reservoirs, multiple subsystems with finite heat capacity and arbitrary contacts
between them). This proof follows from our solution of the general problem
of the maximal extend of heat into work and work into heat transformation
permitted by thermodynamics. It also obtain the conditions which determine
temperature distributions within the systems that can only be maintained if an
external energy is supplied to the system and the optimal temperature lows that
are required to maintain the given distribution of temperatures in a part of the
system.

Introduction
The problem of obtaining the maximal work in a nonequilibrium thermo-

dynamic system is one of the fundamental problems of thermodynamics. If
process’ duration and its objective low’s rate (engine’s power) are not con-
strained then the solution is a reversible process. In many cases the problem
of maximal-possible power of a heat engine arises ([1], [2]). This problem is
meaningless when heat engine operates reversibly. It this paper we extend it
to a heat engine operating in a general type stationary thermodynamic sys-
tem with multiple reservoirs and multiple finite-capacity subsystems. If heat
transfer laws and heat transfer coefficients are given then such a system will
reach a stationary state and remain in it. This state is described by distribu-
tion of temperatures between subsystems, that is, by a discrete temperature
field within the system. We assume first that each subsystem (reservoir with
constant a temperature, finite-capacity ubsystems, transformer – heat engine or
heat pump) be internally-reversible. Thus, irreversible effects occur only on the
boundaries between the subsystems. This assumption is necessary to guarantee
the validity of thermodynamic description for each subsystem.

Various constraints on the subsystems’ temperatures may cause the maximal
power N in such a system to be positive or negative. If there is no transformer
in the system then some, usually unique, distribution of temperatures will be
reached. We shall call this self-settled temperature field in the system. If the
system includes a transformer then different configurations of temperature fields
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are possible depending on the temperatures of its working body during contacts
with the subsystems (control variables) and heat transfer coefficients. For some
temperatures the maximal power generated by transformer will be positive and
for others it will be negative.

The maximal power problem for two reservoirs and linear heat transfer has
been studied in details. The optimal thermostatting problem has been formu-
lated and solved for a system that consists of sequentially connected subsystems
([3], [4], [5]). To the best of our knowledge the problem of constructing the set
of realizable temperature fields and its division into generating and consuming
power subsets has not been considered in the literature.

In this paper is considers these problems for a general type system with
arbitrary structure. The general solutions are then specified for Newton laws
of heat transfer. In many cases it turns out that the extremal conditions are
reduced to the requirements that some function has the same value during every
contact between the heat engine (heat pump) and every subsystem. This allows
us to construct a control system to maintain maximal power when external
conditions change. In the sequel we will refer to the heat engine and heat pump
as transformers. All these problems can be extended into the systems which are
non-homogeneous with respect to pressure or to other intensive variables. We
limited the scope to temperature non-homogeneous systems to keep results in a
compact form.

Transformer’s maximal power
We consider a stationary thermodynamic system which consists of (n - m)

reservoirs with constant temperatures, m finite-capacity subsystems, whose tem-
peratures are determined by their internal energies and the transformer. We de-
note the heat exchange lows between subsystems as qij . These lows are caused
by the temperature differences between subsystems. The transformer generates
power by contacting the subsystems when it receives heat from them or rejects
heat into them. It is required to find such temperatures ui for the contact be-
tween the transformer and each of the subsystems that the power N is maximal.
If the maximal power is negative then it corresponds to the minimum of the
external power consumed by the system.

Problem formulation and conditions of optimality We denote the temper-
ature of the i-th subsystem as Ti, the heat low between the i-th and the j-th
subsystems as qij(Ti, Tj), and the temperature of the working body when it con-
tacts the i-th subsystem as ui, the heat low between the i-th subsystem and the
transformer as qi(Ti, ui) and the power of the transformer as N. We define the
low entering each subsystem as positive. When Ti increases, qij decreases mono-
tonically, and when Tj increases, the low increases monotonically. If Ti = Tj

then qij = 0. If there is contact between subsystems then qij = 0. We assume
that functions qij(Ti, Tj) are continuously-differentiable and that the working
body is internally reversible and the entropy production in it is equal zero. The
maximal power problem takes the form
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N =
n∑

i=1

qi(Ti, ui)→ max
ui

(1)

subject to
n∑

i=1

qi(Ti, ui)
ui

= 0 (2)

n∑
i=1

qij(Ti, Tj) = qj(Tj , uj), j = 1, ...,m (3)

The optimal contacts’ temperatures obey the condition

u2
i ∂qi/∂ui

ui∂qi/∂ui − qi
= Λ, i = m + 1, ..., n (4)

We shall call the left-hand side of this equation (which has the dimension of
temperature) the reduced contact temperature. Thus, the following Statement
holds:
In order to obtain the maximal power the reduced contacts’ temperatures for
contacts with all reservoirs of the transnformer must be equal. The optimal
contact temperature for a contact with a finite-capacity subsystem is

u2
i ∂qi/∂ui

ui∂qi/∂ui − qi
=

Λ
1 + λi

, i = 1, ...,m. (5)

The condition (5) relates the reduced contact temperature for contact with the
i-th subsystem with the reduced contact temperature with reservoirs Λ and
λi multipliers . These general conditions can be significantly simplified for
particular systems.

Conclusion
The limited possibilities of energy transformation in a thermodynamic sys-

tem with given structure and given exchange kinetics were studied. The results
obtained include maximal power and the formula which determines the bound-
ary between temperature fields in the system can be maintained only if power
is generated (maximal power is positive) or if energy is spent (maximal power is
negative). The minimal energy required to maintain given field of temperatures
in a multi-chamber system and the corresponding heat flows and temperatures
of chambers with free temperatures have been obtained.
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An industrial firm is an important element of an economic system. In 
economic theory the firm is considered as a peculiar case of economic 
agents. Its specific features are following: 

 The firm fixes prices for both sides of the system: factors of 
production and output goods, if the firm has got monopolistic power 
at corresponding markets. 

 The firm extracts money from the economic system; intensity of 
this money flux is the firm’s profit and it is an objective function for 
the firm. 

The firm as a subject of the economic theory is investigated well 
including application of thermodynamic approach [1–3]. But all 
economic models use only one tool namely production function to 
describe features of manufacturing method. Production function is a 
dependency between yield and inputs. It is assumed that regime of 
processing line operation have been chosen to be optimal for any set of 
factors of production before the economic analysis. 

The similar assumption is made by engineers. During the analysis of the 
manufacturing method they assume all prices to be constant. It means 
that as for economic researches we suppose that economic policy of the 
firm is optimal for any regime of manufacturing equipment.  

In this report a problem of optimal control of the firm is formulized as a 
complex problem of cost-performance choice. Problem statement: to 
determine process-dependent parameters, prices of yield and inputs, 
intensities of resources fluxes to maximize a vector of performance 
indices of the firm. Note that the vector of performance indices includes 
both engineering and economic components.  
                                                             
1 This work is supported by Russian Foundation for Basic Research 
(grant No. 08-06-00141). 



In a simple case of separable factors of production we can introduce 
analogs of COP as ratio of intensities of yield flux and the i-th factor 
flux. Thermoeconomic investigations [4, 5] bring to significant results 
but some sufficient troubles occur because of different interpretation of 
“cost” notion. Here are some questions without an unambiguous answer: 

o Which kinds of costs should be accounted during the economic 
analysis of the firm? 

o Which economic criteria should be chosen as the objective 
function? 

o Which intensive variables do determine intensities of the resources 
fluxes in the system? 

Results of the investigation depend on answers of these questions; that is 
why these results are different. 

Here we consider a generalized model of the firm. Otherwise this model 
would be one more solution in a row. So, let us consider the firm 
consisting of the manufacturing equipment. The firm can exchange 
resources with its environment. Production process depends on both 
exogenous potentials ߤ଴ = ,଴ଵߤ) … ,  ଴ே) and endogenous potentialsߤ
ߤ = ,ଵߤ) … ,  ே). These two kinds of potentials determine values ofߤ
driving forces. Driving forces determine in turn intensities of fluxes 
݃ = (݃ଵ,… , ݃ெ) of production factors. One can use equations of 
material balances to calculate yield flux intensity n as a dependency of 
vector g. The performance vector ߟ = ,ଵߟ) … , ௜ߟ ெ), whereߟ = ݊/݃௜, 
can be found now. 

To optimize engineering part of the model of the firm one need to solve 
the following problem: 

ߟ → maxఓ,    subject to    ݊൫݃(ߤ଴, ൯(ߤ =fix. (1) 

To describe economic interactions we use the thermodynamic approach 
[6]. Objective for the firm is the profit π and the performance index is 
the profitability ߟ௘ =  Here p is prices vector. Prices p .(݃݌)/ߨ
determine intensities of factors of production fluxes according to 
demand functions (kinetic equations of the economic processes). These 
fluxes g determine values of exogenous potentials ߤ଴. So, optimization 
problem for economic part has the form 

௘ߟ → maxఓబ,    subject to    ߨ൫݊, ݃, ,݃)݌ ଴)൯ߤ =fix. (2) 

Fluxes of factors of production are determined by process-dependent 
parameters on the one hand and economic potentials on the other hand. 



These fluxes are irreversible and we can introduce a measure of 
irreversibility of exchange processes. Let us call it traditionally: 
dissipation of the resources. In our model dissipation is a vector. 

The following statement is proved in the report: Considered problem on 
performance maximization is dual to the problem on minimization of 
dissipation vector. For both the problems the optimal solution can be 
found in Pareto set. It means that the solution is not uniquely dependent. 
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The theory of evolution by natural selection (1) is undoubtedly the most general and holistic description of the living 
nature. However, from the cross-disciplinary perspective of biophysics, it is relevant to ask: What is the fundamental 
law of nature that evolution follows? How to express the evolutionary theory in thermodynamic terms?  

It is, of course, no new thought that evolution is a manifestation of the 2nd law  of  thermodynamics  (2).  On  the  
contrary, it seems that already a century ago Ludwig Boltzmann aimed at deriving an equation of motion for evolution 
from the first principles. Boltzmann understood evolution as a probable process, a likely sequence of events, far from 
being a miracle. Therefore he defined a concept, known as probability P, to summarize the state of a many-body 
system. Logarithmic probability, known as entropy S = kBlnP, is the additive measure for the status of a system in 
evolution from one state to another, more probable one. This directional process is thus understood to follow the 
principle of increasing entropy dS/dt > 0. 

Apparently Boltzmann failed to complete his agenda since statistical physics, i.e., the foundation of thermodynamics, 
has remained limited to closed systems whereas biological systems are unmistakably open to their surroundings. 
Consequently, thermodynamics has had difficulties in understanding what life is. The lack of understanding is reflected 
in many puzzling questions. For example, why life emerged? Why natural amino acids in proteins display a consensus 
of chirality? Why the genetic code is ubiquitous? Why our genomes are loaded with non-phenotypic DNA? Why 
protein folding is so difficult to predict? Why distributions of animals and plants are skewed, nearly log-normal? Why 
cumulative curves of natural distributions are on log-log plots mostly straight lines, i.e., power-laws such as the species-
area relationship? What drives ecological succession and gives rise to diversity in general? Why the entire biosphere 
behaves as a homeostatic system? Why nature organizes itself in a nested hierarchy of functional systems within 
systems? Of course there are many other related perplexing questions in the fields where Darwin’s theory has found 
supporters. For example, where do the laws of economy, such as the law of supply and demand as well as the law of 
diminishing returns come from? 

These questions are addressed using the 2nd law of thermodynamics written as an equation of motion derived from 
statistical physics of open systems (3,4,5). Thermodynamics pictures everything in terms of energy. The holistic theory 
is independent of scale and mechanisms of energy transduction and dispersal. While the description of evolution to 
hierarchical organizations by the natural law is by no means new (6), the value of the mathematical formulation of 
natural processes is that evolution at any scale and irrespective of its mechanisms can be analyzed rigorously. The 
analysis reveals that evolution is a non-deterministic process that consumes free energy in the quest to level off energy 
density differences. However, evolutionary trajectories are inherently intractable, i.e., unpredictable because the flows 
of energy are inseparable from their driving forces in non-Hamiltonian systems with degrees of freedom. 
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4. Annila, A. & Annila, E. Why did life emerge? Int. J. Astrobiol. 2008, 7, 293–300.  
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Intramolecular association (association internal to the molecule) has been shown to have a significant 
effect on the phase behavior of glycol ethers (a green solvent) [1] and of telechelic polymers [2].  
Brinkley and Gupta [1] measured the extent of intramolecular association in systems containing 
glycolethers using spectroscopy (FTIR).  The influence of intermolecular and intramolecular 
association on the phase behavior of telechelic polymers was shown by Gregg, Stein and Radosz [2]. 
  
When the SAFT equation of state was originally developed in the late 1980's [3] it only included 
intermolecular association to form chain or tree-like structures, while the formation of rings was 
neglected. Around 1994-1995 two groups (Sear & Jackson [4] and Chapman & coworkers [5-6]) 
independently extended the SAFT theory to include ring formation from chains with one attractive site 
on each terminal segment. Using different approaches, the two groups developed equivalent 
expressions for the contribution to the Helmholtz free energy for this specific type of intramolecular 
association.  Although the theories were eventually applied to mixtures, a general solution for mixtures 
of molecules with multiple association sites was not obtained.  
 
In this work the theory has been extended to provide a general expression for the free energy of 
mixtures of molecules with multiple associating sites that can form intermolecular and intramolecular 
bonds (even multiple intramolecular bonds within the same molecule are possible).The equations have 
been rewritten using the approach of Michelsen and Hendriks [7] in order to simplify the calculations. 
 
The theory will be applied to different systems of interest, such as systems containing glycol, 
glycolether, or other compounds with multiple functional (associating) groups, using the PC-SAFT 
equation of state [8-9], and the results will be compared to the results with PC-SAFT without 
accounting for intramolecular association. 
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Abstract 

A rectangular box filled by an ideal monatomic gas and separated into two parts, namely macro and nano, is 

considered. Under temperature gradient, it is shown that thermosize effects, similar to thermoelectric effects, arise 

due to changes of thermodynamic and transport characteristics of gases in small scaled systems. A possibly new 

thermodynamic power cycle based on thermosize effects is analyzed. Expressions for specific work, heat and 

efficiency of a possible thermosize power cycle are derived and the cycle is thermodynamically examined. The 

results can be useful to design some new devices. 

1. Introduction 

In recent years, micro/nano systems constitute a new research area in literature. In addition to a great number of 

experimental inventions and practical applications, also the theoretical predictions about the new effects, which can appear 

just in micro/nano systems, provoke rapid developments in nanotechnology [1-7]. In nano scale, thermodynamic and 

transport properties of gases differ from those in macro scale [8-15]. These differences introduce some new effects and 

make the realization of new devices possible. Thermosize effects are the new effects, which arise due to changes of 

thermodynamic and transport characteristics of gases in small scaled systems. Physical mechanisms of thermosize effects 

are similar to those of thermoelectric effects although they do not exactly match up with each other in mathematical 

representation. In this study, a rectangular box divided into two parts, namely macro and nano, is considered. The box is 

assumed to be under a temperature gradient and filled by a monatomic gas. Macro and nano parts are connected to each 

other by a channel at low temperature side while they are disconnected at high temperature side. Under steady state 

conditions, pressure gradient is zero in macro part. On the other hand, the particle flux is zero in nano part since the domain 

size is smaller than the mean free path of particles, l. It is shown that these different regimes cause different chemical 

potential gradient under the same temperature gradient. Therefore, a chemical potential difference occurs at the high 

temperature side of the box. This chemical potential difference can drive the particle transport if the disconnected parts at 

high temperature side are connected to each other by a hole smaller than l. Consequently, temperature gradient causes a gas 

flow, which is able to produce work. This constitutes a possibly new thermodynamic power cycle which can be observed in 

case of the combination of macro and nano structures. These effects are called here thermosize effects and the cycle 

constitutes a thermosize power cycle which is similar to thermoelectric power cycle. Expressions for specific work, heat 

and efficiency of a possible thermosize power cycle are derived and the cycle is thermodynamically analyzed. The results 

obtained here can be useful to design a new device based on thermosize effects. 

2. Thermosize effects 

A rectangular box filled by a monatomic gas and separated into nano and macro parts in one direction is seen in 

figure 1. The box is under temperature gradient. Macro and nano parts are connected to each other by a channel at 

low temperature side while they are disconnected at high temperature side. At the beginning, gas flow is not 

allowed since macro and nano parts are disconnected at high temperature side. Under steady state conditions, zero 
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net particle flux corresponds to zero pressure gradient, 0=∇p
r

, in macro part since the size of the domain is much 

bigger than the mean free path of particles and the hydrodynamic regime is built in this part [16]. On the other 

hand, zero net particle flux corresponds to the condition of ( ) 0=∇ Tp
r

 since the size of the domain is smaller 

than the mean free path of particles and the free molecular regime is built in nano part [16]. Therefore, chemical 

potential gradients are different in macro and nano parts although the temperature gradients are the same. 
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Figure 1: Thermosize effects. 

Chemical potential of a monatomic ideal gas is given as [14] 
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⎟
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where T is temperature, k is the Boltzmann’s constant, n is particle density, c is a constant defined by 

( ) 3232 hmkc π= , m is the atomic mass and h is the Planck’s constant. By considering Eq.(1) and the conditions 

of 0=∇p
r

 and ( ) 0=∇ Tp
r

, the derivations of chemical potential with respect to temperature for macro and 

nano domains can be determined as follows respectively, 
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Since 32 µµ = , net chemical potential difference, 14 µµµ −=∆ , can be obtained as  
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By use of ideal gas equation of state, , and the conditions of nkTp = 0=∇p
r

 and ( ) 0=∇ Tp
r

, the variations of 

densities in macro and nano parts can be given as respectively, 

( ) TTnTn Lm 2=  (5) 

( ) ( ) 21
2 TTnTn Ln =  (6) 



JETC 10 COPENHAGEN 22-24 June 2009 
Joint European Thermodynamics Conference 

It should be noted that 32 nn =  since 32 µµ =  and LTTT == 32 . Therefore, net chemical potential difference, 

14 µµµ −=∆ , can be determined by using Eqs.(1), (4)-(6) as 
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Therefore, in this kind of configuration, temperature gradient causes a driving force for particle (or mass) 

transport from region 1 to region 4. Particle transport causes also heat exchange during isothermal process 4-1. 

Isothermal heat exchange per transferred particle can be calculated as 

( )41

1

4
41 ssTTdsq H −== ∫  (8) 

For an ideal Maxwell gas, the relation between entropy per particle and chemical potential is given by 

T
ks µ
−=

2
5 . (9) 

By using Eq.(9) in Eq.(8),  is obtained as follows, 41q
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H T

TTkq ln
21441 µµ . (10) 

It should be noted that both chemical potential difference due to temperature gradient, Eq.(7), and isothermal heat 

exchange, Eq.(10), are similar to the Seebeck and Peltier effects in thermoelectric processes. These effects here 

are called thermosize effects since they result from both temperature and size difference together. 

3. Thermodynamic analysis of a thermosize power cycle 

If the regions (4) and (1) are connected to each other by a hole smaller than l, a gas flow begins and a 

thermodynamic cycle occurs. Figure (2a) represents this cycle. T-s diagram of the cycle is given in Figure (2b). 

Exchanged heats during the processes (1-2), (2-3) and (3-4) can be calculated as 
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Figure 2: Thermosize power cycle. 
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Net specific work output is  

( LH
L

H
H TTk

T
T

Tkqqqqw −−⎟⎟
⎠

⎞
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⎛
=+++=

2241342312 ln ) , (14) 

While the net specific heat input is  given by Eq.(10). Therefore efficiency of this cycle is 41q

τ
τη

ln
−

+=
11 . (15) 

where τ  is the temperature ratio defined by HL TT=τ . Efficiency and the Carnot efficiency versus to 

temperature ratio are shown in figure 3a. It is seen that the difference between the efficiency of the cycle and that 

of Carnot reaches its maximum value of 0.3 when τ=0.2. Variation of the dimensionless specific work with the 

temperature ratio is given in figure 3b. It is understood that specific work is less than the thermal energy of 

particles in the wide range of τ. 

 

           

ηC=1-τ 
η w/kT

τ τ  

Figure 3: (a) Variation of efficiency with temperature ratio,  (b) Dimensionless specific work vs τ. 

Conclusion 

Combination of macro and nano channels filled by an ideal gas under temperature gradient constitutes a 

thermodynamic cycles based on thermosize effects. This possibly new effects and the cycle can be used to convert 

heat energy to mechanical energy in micro/nano devices. A more detailed investigation of this kind of cycles 

using ideal quantum gases is also an undergoing work. 
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This paper shows how the classical methods of optimal control can be used by the solar energy 
engineer. A number of applications were selected to give a broad idea about the usefulness of these 
optimization procedures. 
 
1. Sizing solar collection area 
 
As a first example, we refer to the optimum size and structure of the solar energy collection systems 
[1].  Several procedures for sizing and optimizing the structure of solar collection systems are 
proposed.  Four economical indices, including net present value and internal return rate, are given as 
examples of objective functions. Three solar energy applications were considered. A rather involved 
but still simple flat-plate solar collector model is used in calculations. The implementation was made 
for a specific geographical location with a detailed meteorological database available. In the case of 
solar collectors with uniformly distributed parameters, the procedure allows one to select the best 
devices from a given set of solar collectors. For every selected device the optimum range of the 
operation temperature is also determined. The best solution corresponds to systems with optimal non-
uniformly distributed parameters (Fig. 1).  
 

 
Fig. 1. (a) The number of transparent layers N  and (b) the thickness of the bottom thermal insulation 

bL  for a solar collector system with non-uniform optimally distributed parameters.  
 
The general theorem proposed here shows how the modified optical efficiency and heat loss coefficient 
should be distributed for cost minimization. One finds that unglazed, single-glazed and double-glazed 
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collectors should be used on the same collection area in order to obtain the best performance. Also, the 
bottom insulation thickness should be changed accordingly.  
 
2. Sizing solar collectors 
 
As a second example, we refer to the optimum fin geometry in flat-plate solar collector systems [2]. 
The width and thickness of fins is optimized by minimizing the cost per unit useful heat flux. The 
proposed procedure allows computation of the necessary collection surface area. A rather involved but 
still simple flat-plate solar collector model is used in calculations. Model implementation requires a 
specific geographical location with a detailed meteorological database available. Both fins of uniform 
and variable thickness were considered. In case of fins with uniform thickness, the optimum distance 
between tube centre decreases by increasing the operation temperature, while the optimum fin 
thickness is relatively the same, whatever the operation temperature and meteorological factors. The 
optimized width of the collection surface decreases when the operation temperature increases. The best 
economical performance is obtained in case of fins with optimized space variable thickness (Fig. 2).  

 

Fig. 2. Optimum distance W  between two adjacent tubes centers for a fin of variable thickness as a 
function of fluid inlet temperature ifT , . Operation during the cold and warm season as well as during 
the whole year was considered. Meteorological data for the whole year 1961 in Bucharest were used. 

 

Optimal control techniques are used in this case. The optimum fin cross-section is very close to an 
isosceles triangle. The fin width is shorter and the seasonal influence is weaker at lower operation 
temperatures. Fin width and thickness at base depend on season. The optimum distance between the 
tubes increases by increasing the inlet fluid temperature and it is larger in the cold season than in the 
warm season.  
 
3. Optimal operation -  systems with water storage tanks 
 
As a third example, we refer to the optimal control of flow in solar collector systems with fully mixed 
water storage tanks [3]. Closed loop flat-plate solar collector systems are considered. The water storage 
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tank operates in fully mixed regime. Two design configurations were considered: (A) one serpentine in 
the tank (for the secondary circuit) and (B) two serpentines in the tank (for both primary and secondary 
circuits). An indirect optimal control technique based on Pontryagin’s maximum principle was 
implemented. A detailed collector model and realistic meteorological data from both cold and warm 
seasons were used in applications.  Configuration (A) gives better performance than configuration (B) 
but cannot be used during the cold season at higher geographical latitudes. The optimal operation 
strategy involves two-step up and down jumps between zero and a maximum allowable fluid flow rate 
in the primary circuit. During days with overcast sky the pump in the primary circuit operates almost 
continuously. During days with cloudy or clear sky the pump often stops. The heat provided to the user 
increases when the maximum fluid flow rate increases. This applies to both configurations (A) and (B). 
In case of configuration (B) the heat provided to the user becomes rather constant at higher flow rates.  

 
 

Fig. 3. Dependence on day during cold season of: (a) thermal energy inQ̂  [kWh] accumulated during a 

day in the water storage tank, (b) thermal energy lost through the walls of the water storage tank, lossQ̂  

[kWh] and (c) thermal energy outQ̂   [kWh] supplied to the user. Results for day-time and night-time 
are presented separately in cases (b) and (c). 

 
Figure 3 shows some results. When a constant flow rate strategy is adopted, there is an optimum ratio 
between the volume of the storage tank and the area of the solar energy collection 
surface: 2/3.33/ mLAVs ≈ . The optimal control strategy does not exhibit such an optimum: the 
thermal energy supply to the user (slightly) decreases by increasing the ratio AVs / .  
 
4. Optimal operation - maximum exergy extraction 

 
As a fourth example, we refer to optimal control of flow in solar collectors for maximum exergy 
extraction [4]. The best operation strategies for open loop flat-plate solar collector systems are 
considered. A direct optimal control method (the TOMP algorithm) is implemented. A detailed 
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collector model and realistic meteorological data from both cold and warm seasons are used in 
applications. The maximum exergetic efficiency is low (usually less than 3 %), in good agreement with 
experimental measurements reported in literature.  

 
Fig. 5. Dependence of the optimum mass flow rate 'm&  per unit collector surface area on hour number 

in July for different values of the inlet fluid temperature. (a) K285=fiT ; (b) K300=fiT  (c) 

K320=fiT . The dependence of the incident solar global irradiance on the hour number is also shown 
in (d). Only hours during the daylight time are represented. 

 
The optimum mass flow rate increases near sunrise and sunset and by increasing the fluid inlet 
temperature. The optimum mass flow rate is well correlated with global solar irradiance during the 
warm season (Fig. 4). Also, operation at a properly defined constant mass flow rate may be close to the 
optimal operation. 
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Abstract 

Flash-boiling atomization is one of the most effective means of generating a fine and narrow 

(size)-dispersed spray. It consists of an inlet and discharge orifices, connected by an 

expansion chamber. Employing a special designed injector, lead to optimized spray properties 

for lower injection pressures. 

A mixture of liquids flows through the inlet orifice into the expansion chamber. The solute, 

usually the propellant, is characterized by a high vapour pressure. Flash boiling of the 

propellant occurs within the inlet orifice, after which the bubbles grow along the expansion 

chamber. The growth process continues until the solvent, the liquid to be sprayed, is no longer 

a continuous medium, but rather large droplets, separated by the propellant's vapour. The 

mixture than exits through the discharge orifice, and further atomizes, usually by shear 

mechanisms.  

The higher the number of the vapour nuclei created during the flash boiling process, the 

smaller the droplets that will be created just prior to discharging. If so, than one must strive to 

design an atomizer in which the metastable degree of the propellant will be the highest 

possible, i.e. phase change at the spinodal limit. 

However, it was found that the optimal discharge occurs when the 2Phase mixture discharges 

in a critical regime, at high volume fraction, according to the Slip Frozen Model (SFM). 

Namely, when the vapour discharge at sound velocity, maximal slip prevail, thus enhancing 

the shear atomization, outside the atomizer.  



Rigorous and General Definition of Thermodynamic Entropy.

Part II: Temperature of a Thermal Reservoir and Entropy

Gian Paolo Beretta∗ and Enzo Zanchini†

Assumption 1: restriction to normal system. We call normal system any system A that, starting from
every state, can be changed to a non-equilibrium state with higher energy by means of a weight process for A in
which the regions of space RRRA occupied by the constituents of A have no net change. From here on, we consider
only normal systems.
Comment. In traditional treatments of thermodynamics, Assumption 1 is not stated explicitly, but it is used,
for example when one states that any amount of work can be transferred to a thermal reservoir by a stirrer.

Theorem 1. Impossibility of a PMM2. If a normal system A is in a stable equilibrium state, it is
impossible to lower its energy by means of a weight process for A in which the regions of space RRRA occupied by
the constituents of A have no net change.
Proof. (Figure 1) Suppose that, starting from a stable equilibrium state Ase of A, by means of a weight process
Π1 with positive work WA→ = W > 0, the energy of A is lowered and the regions of space RRRA occupied by the
constituents of A have no net change. On account of Assumption 1, it would be possible to perform a weight
process Π2 for A in which the regions of space RRRA occupied by the constituents of A have no net change, the
weight M is restored to its initial state so that the positive amount of energy WA← = W > 0 is supplied back
to A, and the final state of A is a nonequilibrium state, namely, a state clearly different from Ase. Thus, the
zero-work sequence of weight processes (Π1, Π2) would violate the definition of stable equilibrium state.

Second Law. Among all the states of a system A such that the constituents of A are contained in a given set
of regions of space RRRA, there is a unique stable equilibrium state for every value of the energy EA.

Lemma 1. Any stable equilibrium state As of a system A is accessible via an irreversible zero-work weight
process from any other state A1 with the same regions of space RRRA and the same value of the energy EA.
Proof. By the first law and the definition of energy, As and A1 can be interconnected by a zero-work weight
process for A. However, a zero-work weight process from As to A1 would violate the definition of stable
equilibrium state. Therefore, the process must be in the direction from A1 to As. The absence of a zero-work
weight process in the opposite direction, implies that any zero-work weight process from A1 to As is irreversible.

Mutual stable equilibrium states. We say that two stable equilibrium states Ase and Bse are mutual sta-
ble equilibrium states if, when A is in state Ase and B in state Bse, the composite system AB is in a stable
equilibrium state. The definition holds also for a pair of states of the same system: in this case, system AB is
composed of A and of a duplicate of A.

Thermal reservoir. We call thermal reservoir a closed and always separable system R with a single con-
stituent, contained in a fixed region of space, with a vanishing external force field, and with values of the energy
restricted to a finite range such that all the stable equilibrium states of R are mutual stable equilibrium states.

Comment. Every single-constituent system without internal boundaries and applied external fields, and with a
number of particles of the order of one mole (so that the simple system approximation as defined in Ref. [1,
p.263] applies), when restricted to a fixed region of space of appropriate volume and to the range of energy
values corresponding to the so-called triple-point stable equilibrium states, is a thermal reservoir.

Assumption 2. Equivalent thermal reservoirs. If R′ and R′′ are thermal reservoirs with the same con-
stituent, then every stable equilibrium state of R′ is in mutual stable equilibrium with any stable equilibrium
state of R′′. Then, R′ and R′′ are called equivalent thermal reservoirs.

∗Università di Brescia, Italy, beretta@ing.unibs.it
†Università di Bologna, Italy, enzo.zanchini@unibo.it
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Figure 1: Schematic illustration of the proof
of Theorem 1.
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Figure 2: Schematic illustration of the processes used to
define the temperature of a thermal reservoir.

Reference thermal reservoir. A thermal reservoir with a constituent chosen once and for all, will be called
a reference thermal reservoir. To fix ideas, we will choose water as the constituent of our reference thermal
reservoir.

Standard weight process. Given a pair of states (A1, A2) of a system A and a thermal reservoir R, we call
standard weight process for AR from A1 to A2 a weight process for the composite system AR in which the end
states of R are stable equilibrium states. We denote by (A1R1 → A2R2)sw a standard weight process for AR
from A1 to A2 and by (∆ER)swA1A2

the corresponding energy change of the thermal reservoir R.

Assumption 3. Every pair of states (A1, A2) of a system A can be interconnected by a reversible standard
weight process for AR, where R is an arbitrarily chosen thermal reservoir.

Theorem 2. For a given system A and a given reservoir R, among all the standard weight processes for AR
between a given pair of states (A1, A2) of A, the energy change (∆ER)swA1A2

of the thermal reservoir R has a
lower bound which is reached if and only if the process is reversible.
The proof of Theorem 2 is omitted here, for brevity.

Theorem 3. Let R′ and R′′ be any two thermal reservoirs and consider the energy changes, (∆ER′
)swrev
A1A2

and (∆ER′′
)swrev
A1A2

respectively, in the reversible standard weight processes ΠAR′ = (A1R
′
1 → A2R

′
2)swrev and

ΠAR′′ = (A1R
′′
1 → A2R

′′
2 )swrev, where (A1, A2) is an arbitrarily chosen pair of states of any closed system A.

Then the ratio (∆ER′
)swrev
A1A2

/(∆ER′′
)swrev
A1A2

:
a) is positive;
b) depends only on R′ and R′′, i.e., it is independent of (i) the initial stable equilibrium states of R′ and R′′,
(ii) the choice of system A, and (iii) the choice of states A1 and A2;
c) is unity if R′ and R′′ are equivalent thermal reservoirs.
The proof of Theorem 3 is omitted here, for brevity.

Temperature of a thermal reservoir. (Figure 2) Let R be a given thermal reservoir and Ro a reference
thermal reservoir. Select an arbitrary pair of states (A1, A2) of a system A and consider the energy changes
(∆ER)swrev

A1A2
and (∆ERo

)swrev
A1A2

in two reversible standard weight processes from A1 to A2, one for AR and the
other for ARo, respectively. We call temperature of R the positive quantity

TR = TRo

(∆ER)swrev
A1A2

(∆ERo)swrev
A1A2

, (1)

where TRo is a positive constant associated arbitrarily with the reference thermal reservoir Ro. If for Ro we
select a thermal reservoir having water as constituent and we set TRo = 273.16 K, we obtain the Kelvin tem-
perature scale. Clearly, the temperature TR of R is defined only up to an arbitrary multiplicative constant.

Corollary 2. The ratio of the temperatures of two thermal reservoirs, R′ and R′′, is independent of the choice
of the reference thermal reservoir and can be measured directly as

TR′

TR′′
=

(∆ER′
)swrev
A1A2

(∆ER′′ )swrev
A1A2

, (2)

where (∆ER′
)swrev
A1A2

and (∆ER′′
)swrev
A1A2

are the energy changes of R′ and R′′ in two reversible standard weight
processes, one for AR′ and the other for AR′′, which interconnect the same pair of states (A1, A2).
Proof. Let (∆ERo

)swrev
A1A2

be the energy change of the reference thermal reservoir Ro in any reversible standard



weight process for ARo which interconnects the same states (A1, A2) of A. From Eq. (1) we have

TR ′ = TRo

(∆ER′
)swrev
A1A2

(∆ERo)swrev
A1A2

, TR ′′ = TRo

(∆ER′′
)swrev
A1A2

(∆ERo)swrev
A1A2

, (3)

so that the ratio TR ′/TR ′′ is given by Eq. (2).

Corollary 3. Let (A1, A2) be any pair of states of system A, and let (∆ER)swrev
A1A2

be the energy change of
a thermal reservoir R with temperature TR, in any reversible standard weight process for AR from A1 to A2.
Then, for the given system A, the ratio (∆ER)swrev

A1A2
/ TR depends only on the pair of states (A1, A2), i.e., it is

independent of the choice of reservoir R and of its initial stable equilibrium state R1.
Proof. Let us consider two reversible standard weight processes from A1 to A2, one for AR′ and the other for
AR′′, where R′ is a thermal reservoir with temperature TR′ and R′′ is a thermal reservoir with temperature
TR′′ . Then, equation (2) yields

(∆ER′
)swrev
A1A2

TR′
=

(∆ER′′
)swrev
A1A2

TR′′
. (4)

Definition of (thermodynamic) entropy, proof that it is a property. Let (A1 , A2) be any pair of states
of a system A, and let R be an arbitrarily chosen thermal reservoir placed in the environment B of A. We call
entropy difference between A2 and A1 the quantity

SA
2 − SA

1 = − (∆ER)swrev
A1A2

TR
(5)

where (∆ER)swrev
A1A2

is the energy change of R in any reversible standard weight process for AR from A1 to A2,
and TR is the temperature of R. On account of Corollary 3, the right hand side of Eq. (5) is determined
uniquely by states A1 and A2; therefore, entropy is a property of A.
Let A0 be a reference state of A, to which we assign an arbitrarily chosen value of entropy SA

0 . Then, the value
of the entropy of A in any other state A1 of A is determined uniquely by the equation

SA
1 = SA

0 − (∆ER)swrev
A1A0

TR
, (6)

where (∆ER)swrev
A1A0

is the energy change of R in any reversible standard weight process for AR from A0 to A1,
and TR is the temperature of R. Such a process exists for every state A1, on account of Assumption 3.

Theorem 4. Additivity of entropy differences. Consider the pairs of states (C1 = A1B1, C2 = A2B2) of
the composite system C = AB. Then,

SAB
A2B2

− SAB
A1B1

= SA
2 − SA

1 + SB
2 − SB

1 . (7)

Proof. Let us choose a thermal reservoir R, with temperature TR, and consider the sequence (ΠAR, ΠBR)
where ΠAR is a reversible standard weight process for AR from A1 to A2, while ΠBR is a reversible standard
weight process for BR from B1 to B2. The sequence (ΠAR, ΠBR) is a reversible standard weight process for CR
from C1 to C2, in which the energy change of R is the sum of the energy changes in the constituent processes
ΠAR and ΠBR, i.e., (∆ER)swrev

C1C2
= (∆ER)swrev

A1A2
+ (∆ER)swrev

B1B2
. Therefore:

(∆ER)swrev
C1C2

TR
=

(∆ER)swrev
A1A2

TR
+

(∆ER)swrev
B1B2

TR
. (8)

Equation (8) and the definition of entropy (5) yield Eq. (7).
Comment. As a consequence of Theorem 4, if the values of entropy are chosen so that they are additive in the
reference states, entropy results as an additive property.

Theorem 5. Let (A1, A2) be any pair of states of a system A and let R be a thermal reservoir with temperature
TR. Let ΠARirr be any irreversible standard weight process for AR from A1 to A2 and let (∆ER)swirr

A1A2
be the

energy change of R in this process. Then

− (∆ER)swirr
A1A2

TR
< SA

2 − SA
1 . (9)

Proof. Let ΠARrev be any reversible standard weight process for AR from A1 to A2 and let (∆ER)swrev
A1A2

be the
energy change of R in this process. On account of Theorem 2,

(∆ER)swrev
A1A2

< (∆ER)swirr
A1A2

. (10)



Since TR is positive, from Eqs. (10) and (5) one obtains

− (∆ER)swirr
A1A2

TR
< − (∆ER)swrev

A1A2

TR
= SA

2 − SA
1 . (11)

Theorem 6. Principle of entropy nondecrease. Let (A1, A2) be a pair of states of a system A and let
(A1 → A2)W be any weight process for A from A1 to A2. Then, the entropy difference SA

2 −SA
1 is equal to zero

if and only if the weight process is reversible; it is strictly positive if and only if the weight process is irreversible.
Proof. If (A1 → A2)W is reversible, then it is a special case of a reversible standard weight process for AR in
which the initial stable equilibrium state of R does not change. Therefore, (∆ER)swrev

A1A2
= 0 and by applying

the definition of entropy, Eq. (5), one obtains

SA
2 − SA

1 = − (∆ER)swrev
A1A2

TR
= 0 . (12)

If (A1 → A2)W is irreversible, then it is a special case of an irreversible standard weight process for AR in which
the initial stable equilibrium state of R does not change. Therefore, (∆ER)swirr

A1A2
= 0 and Equation (9) yields

SA
2 − SA

1 > − (∆ER)swirr
A1A2

TR
= 0 . (13)

Moreover: if a weight process (A1 → A2)W for A is such that SA
2 −SA

1 = 0, then the process must be reversible,
because we just proved that for any irreversible weight process SA

2 − SA
1 > 0; if a weight process (A1 → A2)W

for A is such that SA
2 − SA

1 > 0, then the process must be irreversible, because we just proved that for any
reversible weight process SA

2 − SA
1 = 0.

CONCLUSIONS
A general definition of thermodynamic entropy [2] is presented, based on operative definitions of all the concepts
employed in the treatment, designed to provide a clarifying and useful, complete and coherent, minimal but
general, rigorous logical framework suitable for unambiguous fundamental discussions on Second Law implica-
tions.
Operative definitions of system, state, isolated system, environment of a system, process, separable system, and
system uncorrelated from its environment are stated, which are valid also in the presence of internal semiper-
meable walls and reaction mechanisms. The concepts of heat and of quasistatic process are never mentioned,
so that the treatment holds also for nonequilibrium states, both for macroscopic and few particles systems.
A definition of thermal reservoir less restrictive than in previous treatments is adopted: it is fulfilled by any
single-constituent simple system contained in a fixed region of space, provided that the energy values are re-
stricted to a suitable finite range. The proof that entropy is a property of the system is completed by a new
explicit proof that the entropy difference between two states of a system is independent of the initial state of
the thermal reservoir chosen to measure it.
The definition of a reversible process is given with reference to a given scenario, i.e., the largest isolated sys-
tem whose subsystems are available for interaction; thus, the operativity of the definition is improved and the
treatment becomes compatible also with old [3] and recent [4] interpretations of irreversibility in the quantum
theoretical framework.
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Introduction 

Larre et al.1 proposed an empirical additive rule to predict the thermal diffusion coefficient of a component 

in a ternary mixture from the combination of the corresponding thermal diffusion coefficients of the binary 

mixtures. More recently, Bou-Ali and Platten2 determined the thermal diffusion coefficients of the three 

components in the ternary mixture 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB) and 

normal dodecane (nC12) with mass fraction ratio 1:1:1 at 25ºC. They verified the empirical additive rule 

and the results showed that this additive rule1 was “not too bad” at least for the only case that was 

investigated. Leahy-Dios et al.3 have provided the thermal diffusion coefficients of the components in the 

ternary mixtures composed of normal octane (nC8), normal decane (nC10) and 1-methylnaphthalene (MN) 

with mass fraction ratios 1:1:1 and 1:1:4 at 22.5ºC, using the same experimental technique as in Ref. [2]. 

They pointed out that for the mixture with mass fraction ratio 1:1:4 the additive rule1 does not work. 

Therefore, the main goal of this study is to extend the previous studies to more ternary mixtures, especially 

with different mass fraction ratios, in order to verify the empirical additive rule1.   

Summary 

In this study, we present a comparison between experimental results with ternary mixtures obtained from 

two different configurations of thermogravitational columns, cylindrical and parallelepiped or flat. Thermal 

diffusion coefficients of six ternary mixtures composed of 1,2,3,4-Tetrahydronaphthalene-Isobutylbenzene-
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nDodecane and 1,2,3,4-Tetrahydronaphthalene-Isobutylbenzene-nDecane with different mass 

concentrations are determined at 25 ºC. Thermal diffusion coefficients of thirteen binary mixtures 

composed of various combinations and mass fractions of these four liquids were also determined at 25 ºC. 

The experimental results show that the thermal diffusion coefficients of the components in ternary mixtures 

can be determined reasonably accurately from a suitable combination of their corresponding thermal 

diffusion coefficients in binaries with specific concentration of the components1. Additionally, we propose 

new correlations that improve the prediction of the ternary thermal diffusion coefficients: 
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TD  is the thermal diffusion coefficient of i component in the mixture. α  is the thermal expansion 

coefficient and μ  is the dynamic viscosity. The subscripts of α  and μ  indicate the components of the 

binary or ternary mixtures. 
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Magnetic nanoparticles and ferrocolloids have interesting medical application possibilities. One the 
most popular novel idea is magnetic hyperthermia of tissues, particularly for cancer treatment. 
Unsteady magnetic field of relatively low amplitude and of median frequency (20 – 80 kHz) may cause 
energy dissipation in colloidal particles of up to 1 – 2 W/g. Such a heating intensity is quite enough to 
realize the medical hyperthermia treatment. However, besides the heating measurements it is important 
to investigate the dynamics of particle transfer in tissues because their heating intensity depends on the 
particle concentration.  

The present paper is devoted to studying the ferroparticle transfer in non-isothermal capillary porous 
layer in the presence of a steady uniform magnetic field. The mass transfer experiments are performed 
employing two equal cylindrical volumes kept at different temperatures and united by chemically 
stable wide-pore capillary layer. The examined ferrofluid consists of magnetite nanoparticles coated 
with oleic acid and suspended in tetradecane. First experiments [1] showed that the measured 
thermoosmotic pressure difference is directed toward the temperature gradient. The unsteady pressure 
difference primarily grows and after reaching a maximum starts to decrease exponentially. 
Homogeneous magnetic field, directed normally to the membrane, causes a remarkable growth of the 
pressure difference. If the magnetic field is aligned parallel to the membrane, the observed pressure 
changes are significantly less. 

The experimental results are interpreted in frame of linear theory of irreversible thermodynamics [2]. 
Three fluxes ji (the flow of solvent j1, the particle flux j2 and the heat flux j3) contain three summands 
which are proportional to thermodynamic driving forces ∇ϕi (gradients of pressure P, particle chemical 
potential ϕc and temperature T). In long time experiments the unsteady pressure difference relaxes to a 
zero. This concedes assuming that the mass transfer through the porous layer is influenced mostly by 
osmotic processes whereas the particle transport (convective, diffusion and thermodiffusion) is small. 
Under such simplification there arises a possibility to calculate from pressure measurements the 
filtration coefficient α11, the coefficient of osmosis α12  and that of thermoosmosis α13. The Onsager 
relations αik= αki allow evaluating also the coefficient of convective particle transfer α21. Obtained 
values of these coefficients confirm the assumption of predomination of filtration and osmosis in the 
examined system. External magnetic field induces an additional pressure difference across the porous 
layer and evokes an increase in the chemical potential of particles [3]. Due to dependence of fluid 
magnetization on both the particle concentration and the temperature, the normal field effects manifest 
themselves as an increase in thermoosmotic pressure and some reduction of solutal osmosis. 
Longitudinal magnetic field causes only small changes in particle mass diffusion transfer. The 
calculation results agree relatively well with experiments.  
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In this investigation we develop a computational frameworkfor optimal reconstruction of isotropic constitutive rela-
tionships between thermodynamic variables based on measurements obtained in a spatially–extended system. In other
words, assuming the constitutive relation in the followinggeneral form

[

thermodynamic
flux

]

= k (state variables)

[

thermodynamic
“force”

]

, (1)

our approach allows us to reconstruct the dependence of the transport coefficientk on the state variables consistent with
the assumed governing equation(s). Constitutive relations in the form (1) arise in many areas of nonequilibrium thermody-
namics and continuum mechanics. To fix attention, but without loss of generality, in the present investigation we focus on
a heat conduction problem in which the heat fluxq represents the thermodynamic flux, whereas the temperaturegradient
∇T is the thermodynamic “force”, so that relation (1) takes thespecific form

q(x) = k(T )∇T, x ∈ Ω, (2)

whereΩ ∈ R
n, n = 1,2,3 is the spatial domain on which the problem is formulated. Wenote that by assuming the function

k : R → R to be given by a constant, we recover the well–known linear Fourier law of heat conduction. While expressions
for the transport coefficients such ask(T ) are typically derived using methods of statistical thermodynamics, in the present
investigation we will show how to reconstruct the functionk(T ) based on some available measurements of the spatial
distribution of the state variableT combined with the relevant conservation law. Such a technique could be useful to
systematically adjust the form of the constitutive relationship derived theoretically to better match actual experimental
data. Combining constitutive relation (2) with the conservation of energy, we obtain a partial differential equation (PDE)
describing the distribution of the temperatureT in the domainΩ corresponding to the distribution of heat sourcesg : Ω→R

and suitable boundary conditions (for example, of the Dirichlet type)

−∇ · [k(T )∇T ] = g in Ω, (3a)

T =Tb on ∂Ω, (3b)

whereTb denotes the boundary temperature. We note that, for all values ofT , we should havek(T ) > 0 which follows
from the second principle of thermodynamics, but is also required for the mathematical well–posedness of elliptic bound-
ary value problem (3). The specific problem we address in thisinvestigation is formulated as follows. Given a set of
“measurements”{T̃i}

M
i=1 of the state variable (temperature)T at a number of points{xi}

M
i=1 in the domainΩ, we seek to

reconstruct the constitutive relationk(T ) such that solutions of problem (3) obtained with this reconstructed function will
fit best the available measurements. This is in fact an example of an “inverse problem” i.e., one in which one tries to de-
termine the cause (i.e., the constitutive relation) corresponding to some known effects (i.e., pointwise measurements of the
temperature field). An approach commonly used to solve inverse problems consists in reformulating them as minimization
problems. This is done by defining the cost functionalJ : R → R as

J (k) ,
1
2

M

∑
i=1

[

T̃i −T (xi;k)
]2

, (4)

where the dependence of the temperature fieldT (·;k) on the form of the constitutive relationk = k(T ) is given by governing
equation (3). Assuming that the functionsk(T ) characterizing the constitutive relation belong to a Hilbert (function) space
X , the optimal reconstruction̂k is obtained as the minimizer of cost functional (4), i.e.,

k̂ = argmink∈X J (k). (5)

1
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Figure 1: The figure represents (solid line) the actual constitutive relationk(T ) and (dotted line with symbols) its optimal
reconstruction̂k(T ) obtained using the proposed algorithm starting from (dashed line) a constant valuek0 as the initial
guess. The measurements{T̃i}

M
i=1 were obtained atM = 10 points uniformly distributed in over the domainΩ = [−1,1].

The minimizerk̂ is characterized by the first–order optimality conditions which require the Gâteaux differential of cost
functional (4), defined asJ ′(k;k′) = limε→0 ε−1[J (k + εk′)− J (k)] to vanish for all perturbationsk′ ∈ X , i.e.,

J
′(k;k′) = 0. (6)

The minimizerk̂ can be computed with the following gradient descent algorithm ask̂ = limn→∞ k(n), where
{

k(n+1) = k(n)− τ(n)∇kJ (k
(n)), n = 1, . . . ,

k(1) = k0,
(7)

in which ∇kJ (k) represents thegradient of cost functionalJ (k) with respect to the control variablek, τ(n) is the length
of the jump along the descent direction at then–th iteration, whereask0 is the initial guess taken, for instance, as a
constant corresponding to a linear constitutive relation (2), or some other approximate theoretical prediction. For the sake
of clarity, formulation (7) represents the steepest–descent algorithm, however in practice one typically uses more advanced
minimization techniques, such as the conjugate gradient method, or one of the quasi–Newton techniques [1]. We note that,
since minimization problem (4)–(5) is in general nonconvex, condition (6) characterizes only alocal, rather thanglobal,
minimizer.

The key ingredient of minimization algorithm (7) is computation of the cost functional gradient∇kJ (k). We emphasize
that, sincek = k(T ) is a continuous variable, the gradient∇kJ (k) represents in fact an infinite–dimensional sensitivity
of J (k) to perturbations ofk(T ). In our presentation we will show that the gradient can be obtained from the Gâteaux
differential using the Riesz representation theorem

J
′(k;k′) =

〈

∇kJ (k),k
′
〉

X
, (8)

where〈·, ·〉X represents the inner product in the Hilbert spaceX , and suitably definedadjoint variables [2]. These adjoint
variables (Lagrange multipliers) are obtained from the solution of the correspondingadjoint system which is at the heart of
the proposed reconstruction algorithm. Since in general inverse problems often tend to be ill–posed, care must be takento
perform suitable regularization. We add that problems in which the transport coefficientk is a function of the space variable

2



x, rather than the state variableT , i.e.,k = k(x), have received some attention in the literature [3], and arenow relatively
well understood. The originality of our contribution consists in that, in contrast to such “parameter estimation” problems,
we address estimation of state–dependent, and therefore nonlinear, constitutive relations. We demonstrate that, as amatter
of fact, the mathematical structure of this new problem is quite different from the structure of the parameter estimation
problem. In Figure 1 we present some sample results obtainedwith our approach in which we were able to reconstruct
the actual constitutive relationk(T ) that was used to obtain the initial measurements. Our futurework will focus on
generalizing our approach to more complex systems arising in fluid mechanics and nonequilibrium thermodynamics. This
will include problems governed by time–dependent equations expressing the conservation of mass, momentum and energy,
and involving also constitutive relations with anisotropic transport coefficients.
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The nonequilibrium radiation of photons by disordered nanoemitters incorporated into three-dimensional (3D) 
clusters in percolation solids is an area of active research. If the concentration of clusters exceeds a certain threshold 
value, then in the system it is formed spanning (infinite) cluster, penetrating the entire volume. This cluster 
qualitatively changes the dynamic properties of the medium and produces a generalized conductivity in the system 
which originally does not possess such a property. In such geometry, the spanning cluster serves as the "backbone", 
or a set of bonds, through which the field radiation of nanosources can flow. 
The percolation problem is concerned with elementary geometrical objects (spheres, sticks, sites, bonds, etc.) placed 
randomly in a d-dimensional lattice or continuum. The objects have a well-defined connectivity radius, and two 
objects are said to communicate if the distance between them is less than this radius. One is interested in how many 
objects can form a cluster of communication, and especially, when and how the clusters become infinite. 
    The order parameter Ps in such a medium is defined as the ratio of the number of pores belonging to the spanning 
cluster to the general number of pores. It is obvious that Ps is distinct from zero only when exceeding the threshold 
concentration (0.31 for 3D case). 
    After formation of the spanning cluster, the opportunity to incorporate the nanoemitters through such the opened 
cluster structure becomes possible. It is important that the cross-section of clusters normally exceeds the field 
wavelength; therefore, such a network forms the open waveguide system by means of which the passage of an 
intensive laser short pulse behaves as the field pump. As a result, the two-level nanoemitters incorporated into such 
a cluster can be raised to the excited state. For simplification of the problem, we have used the natural assumption 
that nanosources are incorporated only in those clusters which have a connection with the entrance (input for laser 
pump) side of the sample. Since the spatial cluster structure in the medium does not change with time, the 
corresponding order parameter Ps is a static property of the system. However, the situation becomes more 
complicated for the case of nonequilibrium radiating nanoemitters incorporated in such disordered structure. 
    The analysis of such a system consists of two steps, and in general it requires quite long computations. The first 
step deals with identification of the spanning cluster Ps as a function of probability occupation p. In the second step, 
the field properties of radiating nanoemitters incorporated into the percolation structure (known from the first step) 
are calculated with the use of technique FDTD.  
We studied the field radiation of disordered nanoemitters incorporated in three-dimensional spanning clusters in a 
percolation material. If the concentration of defects exceeds the threshold value, in the system a spanning cluster 
penetrating the entire medium is formed. The intensity of the radiated field plays the role of the dynamic field order 
parameter at the percolation phase transition. The subcritical clusters with nanoemitters represent a low-density 
statistically disordered phase. However, at the supercritical state with the spanning cluster fulfilled by nanoemitters 
occurs the raise of field intensity that allows to generate a high-density coherent field state (statistically ordered 
phase). In such a situation, the result is different for lossless and lossy mediums. For material with small losses, the 
long-term coherence arises in the supercritical area close to the percolation threshold. As a result, the dynamic non-
monotonic behaviour of the field order parameter is formed. We found that such a property can be predicted from a 
simple 1D model that allows us to conclude that such a nonequilibrium behaviour emerges due to high contribution 
of the coherent nanoemitters in the area closely to the threshold of percolation.  
As a result of numerical experiments, we have found that at the supercritical concentration of disordered 
nanosources the intensity of the field radiation increases sharply. In the lossy medium, or for emitters with random 
phases, the field order parameter Pe has well known equilibrium behaviour. However, the situation changes 
essentially for the coherent radiated nanoemitters in materials with small losses due to arising of field long-term 
coherence. As a result, the dynamic non-monotonic behaviour of the field order parameter raises that allows to reach 
the optimal field intensity already at p near 0.5.  
This effect can allow the use of the disordered optical nanostructures with incorporated radiating nanoemitters in 
various applications of information technology. Since the position of the maximum field order parameter depends on 
the value of the source phases, it also allows the measurement of the level of coherency photons in disordered 
nanostructures. 
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Abstract 
The diffusive regime of the drop evaporation process is investigated in the work on the basics of the fundamental 
equations of the linear irreversible processes thermodynamics. Therefore the full diffusion equation is used to take 
into account all the peculiarities of the investigated system on the very beginning of the investigation process. As the 
result the equation that describes the temperature distribution around the droplet is obtained. Mechanisms to explain 
the absence of the buffer gas diffusion towards the evaporating drop while the concentration gradient exists are 
found. The method to find Onsager’s phenomenological coefficients from the drop evaporation experiments is 
proposed. 
 
Introduction 

Droplet aerosols are widely used in the different fields such as chemistry, medicine, and atmosphere physics. In 
many situations the evaporation of the drops from the substrate surface is of great interest [1]. Such systems require 
a lot of different factors to be taken into account [2, 3], but in any case the basics for the understanding the whole 
process is the model of the free drop evaporation in the buffer gas. The usual way to describe that process is to use 
the Fick’s law with the constant diffusion coefficient and in such a way to calculate the diffusive flow.  For the 
system in the thermostat this law is represented by the next equation: 

 

2
4

n
J Dπρ

ρ

∂
= −

∂
, (1)

  
where ρ  is the radius in the spherical coordinates, D  is the diffusion coefficient and n is the vapor 
concentration. It should be emphasized that in that case the diffusion coefficient is thought to be constant and is 
calculated by the means of the kinetic theory [5]. The classical Maxwell’s formula could be obtained from that 
equation that gives the result for the diffusive flow: 

 

( )
0

4J Dr n nπ
∞

= − , (2)  
 

where ( )0n n r=  - concentration in of the evaporating substance close to the drop, and n
∞  - is the concentration 

on the infinity. In the same time for the description of the real processes it is necessary to take into account a great 
number of the different corrections to the equation (2). They are the Stefan’s flow correction, correctional terms that 
appear from the drop temperature variations and so on [4]. The very important thing that is to be emphasized is that 
all the correctional terms are introduced to the final result (2) but not to the original equation (1). Therefore, the 
particular problem is solved and the result is being modified for the common problem. Such an approach could not 
be called fundamental. Should be also mentioned that even consideration of all the correctional terms in some cases 
is not enough to describe the experimental data [6].  
In such a way we can make a conclusion that the problem of finding the exact thermodynamic theory of the 
evaporation process, based on the fundamental equations of the linear irreversible process thermodynamics seems to 
be of high importance. That means that the common diffusion equation that includes addends connected with all the 
existing gradients should be solved and in such a way the characteristics of the process are to be found. 
 
Model Description 

The problem that is investigated in the work is the problem of the stationary drop evaporation process in the 
diffusive regime. The buffer gas is thought to be not able to dissolve in the droplet. This condition gives us a 
possibility to state that all the flows in the direction of the droplet are to be equal to zero. We assume that while 
evaporating the droplet doesn’t change its shape and during all the process it stays ideally spherical. All the system 
is treated as being in the thermostat and all the external fields are neglected.  



The system of differential [7] equations that fully describes the suggested model is based on the fundamental 
phenomenological law of the irreversible processes thermodynamics [8]. 
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Temperature gradient in the drop evaporation process and entropy production function 
The system of differential equations (3) gives the possibility to find the temperature gradient that is to appear due to 
the diffusion of the evaporating substance. We obtained the following result: 
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                                                                                                                (4) 

 
As for the substance flow in contradiction to the classical approach the nonlinear flow dependence on concentration 
difference near the drop and on the infinity is found (fig. 1) 
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For the entropy production function the next equation is obtained: 
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On fig.2 the entropy production function dependence on the concentration difference is shown. 
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One may see that the dependence differs from the quadratic one. Therefore, Entropy effects consideration in the 
mixture thermodynamic potentials leads to the quite strong difference of the obtained results from the classical one 
with the constant diffusion coefficient.  
 
Conclusions   

From the obtained results one can make a conclusion that in the case of the diffusive regime of the drop 
evaporation process the temperature gradient arises in the surrounding matter. The obtained results are in good 
correspondence with the results for the methanol and ethanol drops evaporation [9]. The existence of such a gradient 
allows explaining the absence of the buffer gas flow in the direction of the droplet when the concentration gradient 
exists.  

The suggested approach shows the strong stabilizing effect in the flow dependence on concentration difference. 
For the simplest model of the mixture the entropy production function is very different from those obtained for the 
constant diffusion coefficient model in classical approach.  

Te method to evaluate Onsager’s kinetic coefficients from the drop evaporation experiments is proposed in the 
work.  

The obtained results show that not in all cases it is possible to use the Fick’s law with the constant diffusion 
coefficient. In some cases it is necessary to take into account its dependence on all the local parameters. 
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Properties of complex materials are not always localizable, since features as singularities interact
with one another at a distance which can become relevant at a convenient scale [1]. Nonlocal effects
become also important in miniaturized systems, such as various kinds of nano-wires and nano-tubes,
since even a small difference of temperature, or electrical potential, over a small scale length may
generate very high temperature gradients [2–4].

A simple way to take into account nonlocal effects is to introduce the gradients of the basic
thermodynamic fields into the constitutive equations describing the material behavior. In such a
case one is facing with weakly nonlocal continuum theories [5]. The classical formulation of second
law of thermodynamics [6], which restricts the form of the constitutive functions, requires that the
dissipation inequality

%s,t + %s,ivi +
(qi

ϑ

)
,i
≥ %

r

ϑ
, (1)

with % as the mass density, s as the specific entropy, ϑ as the absolute temperature, r as the radiative
heat supply, vi, i = 1, 2, 3, as the components of the velocity, qi as the components of the heat flux,
must be satisfied in any thermodynamic process, namely by any solution of the local balances of
mass, linear and angular momentum and energy and, eventually, of additional governing equations
(not necessarily in the balance form) ruling the evolution of some other thermodynamical parameters
representing internal degrees of freedom of the system [7].

The most celebrated techniques for deriving the restrictions placed by second law of thermody-
namics on the constitutive functions are the Coleman-Noll [8] and Liu [9] procedures. In the absence
of any modification of the local form of first or second law of thermodynamics, both procedures lead to
the conclusion that only the fluxes are nonlocal while the entropy and the absolute temperature may
depend only on the unknown fields. Such a conclusion may generate serious discrepancies, because it
renders some important classes of nonlocal materials, such as the Korteweg fluids, incompatible with
second law [10, 11].

In order to circumvent these problems, and still remain in the framework of weakly nonlocal
thermodynamics,1, two different approaches can be found in the literature.

The first one modifies the local balance of energy, by supposing the existence of an energy extra-
flux u, due to the matter diffusion [15] or to the interstitial working of long range interactions [10, 16],
such that it reads

%ε,t + %ε,ivi − Tijvi,j + qi,i − ui,i = %r, (2)

with ε as the specific internal energy and Tij = Tji, i, j = 1, 2, 3, as the components of the Cauchy
stress tensor .

The second one modifies the entropy inequality [17], by postulating the existence of an entropy
extra-flux k such that Eq. (1) becomes

∗In this talk we present some recent results obtained in cooperation with D. Jou (Barcelona), A. Sellitto (Potenza)
and V. Triani (Potenza).

1It is worth noticing that a different theory, namely rational extended thermodynamics [12], postulates a local state
space and regards the fluxes as independent thermodynamic variables. In such a case problems arise in dealing with
some results from kinetic theory which would require a nonlocal state space, such as the celebrated Guyer-Krumhansl
[13, 14] heat transport equation.
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Since the two modifications above are not equivalent and lead to different sets of thermodynamic
restrictions, the choice of one of the two options should be decided on the base of additional infor-
mation, either from experiments or from kinetic theory. Furthermore, even if we assume one of the
two points of view above, problems arise in dealing with first order nonlocal constitutive equations,
i.e. with the main part of the nonlocal continuum theories. This is due to the fact that the classical
procedures allow the entropy to depend on the gradients of order n of the unknown fields if and only
if the constitutive functions depend on the gradients of order n + 1. It is clear that this leads again
to a local entropy in the case of first order non-locality [10, 15, 17].

The considerations above prove that in weakly nonlocal thermodynamics the form of the consti-
tutive equations for the energy and entropy fluxes, is an open problem which deserves consideration.

The aim of this presentation is to illustrate an alternative approach to the problem above, which
does not need to modify the basic thermodynamics represented by the classical balances of energy
and entropy, because a different method of exploitation of second law is applied. The basic idea is to
consider as additional constraints for the entropy inequality the gradient extensions of the governing
equations up to the order of the gradients appearing into the constitutive equations [11, 18, 19]. That
way, the number of the independent equations which constrain the entropy inequality is always equal
to the number of independent thermodynamic variables. The method yields a nonlocal entropy even
in the case of only first order non-locality.

As an application, we present some recent results concerning nonlinear heat conduction in minia-
turized systems and in crystalline dielectrics [20]. In this case a nonlocal entropy is particularly inter-
esting, since the nonlocal terms contribute important nonlinear terms in the heat transport equation.
Modelling heat transport in solids, we use the concept of non-equilibrium semi-empirical temperature
[21–23]. Such a concept is inspired by the essential idea that the heat flux is given by

qi = −κβi, (4)

with κ a suitable function of the thermodynamic state variables, representing the thermal conductivity,
and β a dynamical non-equilibrium temperature. According to Fourier law, the equation (4) preserves
the heat flux in the inverted direction of the gradient of temperature, but in contrast with it, the
temperature differs from thermodynamic absolute temperature θ.

In the presence of first order nonlocal constitutive equations, such an approach is capable to
reproduce the lagging behavior, which is expected in heat conduction in small systems. Also, it
leads to nonlinear generalizations of the celebrated Maxwell-Cattaneo [24] and Guyer-Krumhansl
[13, 14] equations, describing, respectively, the hyperbolic and diffusive-hyperbolic regime during heat
conduction in crystalline solids.

As a further example, a nonlocal thermodynamic model of helium II is presented.
As the conclusion, we present some applications of a new method of exploitation of second law of

thermodynamics, which allows the entropy to be nonlocal also in the absence of an extra-flux of energy
or entropy. Of course, our result does not mean that these extra-fluxes do not exist. For instance,
it is well known that in the the movement of a mixture, the effects of matter diffusion manifest
themselves in the appearance of an additional energy flux related to the chemical potential and to the
relative mass flux of each constituent [15]. We simply claim that, according to the generalized method
of exploitation, they are not essential to the end of conserving nonlocal terms into the constitutive
equation of the entropy. Hence, their effective presence should be decided only on the base of suitable
experimental results. Moreover, to our opinion, new experiments are necessary in order to decide
what is the most well-suited modification of the basic laws of thermodynamics in the presence of
extra-fluxes.
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Ivan Yarkovsky (1844–1902) was a Polish engineer working in Russia [1].
In his spare time, he was an amateur physicist, searching for a fundamental
theory of gravity [2]. In this framework, Yarkovsky discovered ‘his effect’. His
discovery fell into oblivion, until it was rediscovered about 1950. Today the
scientific literature has the tendency to investigate ever more detailed influences
on the Y effect. In contrast, the present paper aims at presenting a model as
simple as possible, in order to give basic properties of the Y effect.

The sun is assumed to be a spherical black body with radius Rs and surface
temperature Ts. At the sun’s surface a power density σT 4

s is emitted. Here σ
is the Stefan–Boltzmann constant. During its way to a planet, the total power
is distributed over an ever increasing surface area, until the power density is
decreased by a factor f = R2

s/r2. Here r is the radius of the planet’s (circular)
orbit around the sun.

The planet is assumed to be a spherical black body with radius Rp. In first
approximation, we may assume that the planet has a uniform surface tempera-
ture Tp. Writing the planet’s energy balance [3]

fσT 4

s πR2

p = σT 4

p 4πR2

p , (1)

yields the planet’s temperature:

Tp =
4

√

f

4
Ts . (2)

This result is thus obtained from the law of conservation of energy. One could re-
mark that the law of conservation of momentum is equally fundamental. There-
fore, the question arises how conservation of momentum influences the radiation
equilibrium of the planet. It is clear that the spherical shape and uniform tem-
perature of the planet results in a spherical symmetry of its (infrared) emitted
radiation. The resulting sum of all photon momenta is zero.

The Yarkovsky effect is caused by the fact that the temperature (and thus
the emitted radiation) of the planet is not uniform. Therefore we introduce a
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Figure 1: A planet illuminated by the solar constant E and emitting infrared
radiation, which causes a rebound force F .

place-dependent temperature T . In order to make the mathematics transparent,
we assume that the local T is only dependent on the longitude ϕ and not on
the latitude ϑ of the place. See Figure 1.

We replace the global equilibrium (1) by a local balance. Choosing ϕ = 0
for the sunrise meridian (i.e. the meridian with 6 o’clock a.m. time), we get:

T (ϕ) = Tp
4

√

π sin(ϕ) if ϕ < π

= 0 if ϕ > π , (3)

where Tp is the temperature (2) from the uniform-temperature model. The
curve Φ = 0 in Figure 2 shows the resulting temperature profile T (ϕ). The
reader may easily verify that the average 1

S

∫∫

S
T 4dS = 1

2π

∫

T 4dϕ equals T 4

p .
Here S is the surface area of the planet: dS = R2

p cos(ϑ)dϑdϕ. The average

( 1

S

∫∫

S T 4dS)1/4 is denoted as R4 by Essex et al. [4].
A non-uniform emission of photons causes a non-zero rebound force F felt

by the planet. This force is directed away from the sun. No mechanical energy
is transferred to the planet: ~v. ~F = vrFr + vtFt = 0Fr + vt0 = 0.

Whereas the uniform temperature (2) is not realistic (nights and days on
earth showing a same temperature), the result (3) is even less realistic. The
latter correctly predicts high day temperatures and low night temperatures,
but greatly exaggerates these temperature fluctuations.

There thus is need for a third, better model. It acknowledges that, on
real planets, temperatures are smoothed out. By heat storage, combined with
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Figure 2: A planet’s surface temperature T , as a function of longitude ϕ.

rotation around the planet’s axis, heat is transported from the day side to
the night side. Therefore, we add to the energy balance a capacitive term.
Moreover, merely for mathematical convenience, we replace the linear capacitive

heat current by a non-linear one: K dT 4

dt . Assuming the north-south axis is
perpendicular to the ecliptic, we thus obtain the linear differential equation in
the unknown T 4(ϕ):

Φ
dT 4

dϕ
+ T 4 = π T 4

p sin(ϕ) if ϕ < π

= 0 if ϕ > π .

Here, the angle Φ is a short-hand notation for Kω/σ, where ω is the angular
velocity of the planet spinning around its own axis. One finds the following
periodic solution:

T 4 = π
1

Φ2 + 1
[

X

X − 1
Φ exp(−ϕ/Φ) − Φ cos(ϕ) + sin(ϕ) ] T 4

p for ϕ < π

= π
Φ

Φ2 + 1

X2

X − 1
exp(−ϕ/Φ) T 4

p for ϕ > π ,

where X is a short-hand notation for exp(π/Φ). The reader may check that
again the property 1

S

∫∫

S
T 4dS = T 4

p and thus R4(T ) = Tp holds. Figure 2
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shows curves T (ϕ). The curves T (ϕ) display a maximum in the afternoon side
of the planet. In spite of the simplicity of our model, our curves are very similar
to the graphs published by Lorenz and Spitale [5] [6] and by Vokrouhlický [7].
We note that now the tangential force Ft(Φ) = π

3

σ
c R2

p

∫

T 4 cos(ϕ) dϕ is non-
zero.

Thus, because a planet with thermal inertia has its hottest side oriented away
from the sun, the net rebound caused by the emission of (infrared) radiation
has a component Ft along the orbit of the planet around the sun. Therefore,
mechanical power is transferred:

~v. ~F = vtFt =
π3

6

v

c

Φ

Φ2 + 1
σR2

pT
4

p ,

with a maximum for Φ = 1. Thus (1) is replaced by

fσT 4

s πR2

p = σT 4

p 4πR2

p + σT 4

p

π3

6
R2

p

Φ

Φ2 + 1

v

c
.

In first-order, we obtain the following average planet temperature:

R4(T ) =
4

√

f

4
Ts

(

1 +
π2

96

Φ

Φ2 + 1

v

c

)

,

The relative correction x is small. E.g. for the earth we find a number of the
order of −10−5. The absolute Yarkovsky correction xTp is thus of the order of
−1 millikelvin.

[1] G. Beekman : “ I. O. Yarkovsky and the discovery of ‘his’ effect ”, J. As-

tronomy 37 (2006), pp. 71-86.

[2] I. Yarkovsky : “ Kinetic theory of universal gravitation in relation with
the generation of ponderable matter within celestial bodies ”, Moscow, in
French (1888) and in Russian (1889).

[3] A. De Vos : “ Thermodynamics of solar energy conversion ”, Wiley–VCH,
Weinheim (2008).

[4] C. Essex, R. McKitrick, and B. Andresen : “ Does a global temperature
exist? ”, J. Non-Equilibrium Therm. 32 (2007), pp. 1-27.

[5] R. Lorenz and J. Spitale : “ Entropy and the Yarkovsky effect ”, Book of

Abstracts of the 5 th Lunar and Planetary Lab. Conf., Tuczon, 22-23 May
2002.

[6] R. Lorenz and J. Spitale : “ The Yarkovsky effect as a heat engine ”, Icarus

170 (2004), pp. 229-233.
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A MATHEMATICAL MODEL FOR CLONE EXPANSION OF T
CELLS DURING VACCINATION
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Abstract. In this communication a mathematical model is presented trying
to look insight the dynamic of immunitary response to antigen attack.
In particular the dynamic of a single clone of lymphocites T repertoire is
considered during the two phase of first and second meeting with the antigen;
a dynamic typically involved in T cell base vaccination.
We have used a macroscopic approach considering the continuum as a mixture.
Local balances are then introduced for the density of the mixture and the
density of memory T cells together with the related momenta and involving
the effect of chemotaxis.
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Gibbs-Bogoliubov Variational Procedure with the
Square-Well Reference System

N.E. Dubinin
Institute of Metallurgy of the Ural Division of the Russian

Academy of Sciences
ned67@mail.ru

The variational method based on the Gibbs-Bogoliubov inequality is
widely used for thermodynamic calculations of liquid metals. As a rule, the
hard-sphere (HS) reference system is used for this purpose. There are a
number of attempts to use  other reference systems: the one-component-
plasma system [1], the charged-hard-sphere system [2], and the hard-sphere
Yukawa one [3]. Here, we perform variational calculations with the square-
well (SW) reference system. The analytical expression for the SW structure
factor  is  taken  in  the  framework  of  the  random  phase  approximation.  The
Helmholtz free energy is minimized with respect to the core diameter, the
SW width, and the SW depth. This approach is applied to the liquid Na and
liquid K at 373K. The Animalu-Heine model pseudopotential and the
Vashishta-Singwi exchange-correlation function are used.  Obtained results
are compared with results of works [1-3] and with our HS-reference-system
results.
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 Functions, not differential equations, are the definitive mathematical objects of 

equilibrium thermodynamics. They are described as "the equation of state” suggesting only 

one exists, but such equations take many forms for any particular physical system. Often the 

relationships between the forms are obscure, unexplored, or even wrongly depicted as 

external to thermodynamics. 

 Here we explore classical equations of state for ideal particles, photons, and 

neutrinos. The usual equations of state are interpreted here as partial differential equations, 

which lead to a unique, fully extensive equation of state. These forms are rarely, if ever, 

expressed explicitly. They are designated as the principal equation of state. The principal 

equation of state is a unique form that acts as a generator for all other forms of the equation 

of state. Moreover, certain obscure properties, such as zero chemical potential for photons, 

become plain to see. Despite their diverse physical contexts they have certain distinctive 

properties in common, some of which are not fully understood. 

 The traditional equations of state for an ideal gas of different species are 
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with the number Ni of species i, summing to a total of N particles. The mass of a particle of 

species i is mi, and g is a constant collecting a number of basic constants of nature. These 

equations, involving intensive as well as extensive variables, are just different projections of 

the principal equation of state U(S, V, {Ni}), where the intensive variables come in as 

coefficients in the total differential 
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 The full principal equation of state for the multi-component ideal gas reads 
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where i accounts for internal degrees of freedom of species i while Ci is the heat capacity per 

particle for the species. This equation acts as a generator for all the usual equations through 

differentiation and possibly keeping one of the variables constant. It is also the starting point 

for calculating the Hessian or metric in thermodynamic geometry, 
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where X is the full set of extensive arguments for U: S, V, {Ni}. 

 For a single-component monatomic ideal gas this principal equation of state reduces 

to 
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which has a striking resemblance to the expression for a van der Waals gas, 
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in which a and b are the van der Waals coefficients. 

 The principal equation of state for photons is 

 
34

31
12

16

3
S

V

c
U  

and for neutrinos 
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In both cases c is the speed of light and  the radiation constant. The small numerical 

difference arises because photons are bosons and neutrinos are fermions. Note that these 

latter two equations do not depend on the particle number N, and consequently their chemical 

potential 0NU . Furthermore, we note that the classical equation of state 

P=(U/V)/3, often depicted as external to thermodynamics, also occurs for neutrinos, and it 

arises directly from these equations. They also yield something less well-known but entirely 

analogous for entropy: P/T=(S/V)/4. 

 The Hessians indicate that all principal equations of state considered here are convex 

functions, but they also are all singular. Why? Is this a necessary property for all 

thermodynamic systems? 
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A first principle reciprocating quantum refrigerator approaching absolute zero Reciprocating refriger-
ators operate by a working medium shuttling heat from the cold to the hot reservoir. This requires external control
of the temperature of the working medium. At very low temperatures a quantum description of the working medium
is required where the control of temperature is governed by manipulating the energy levels of the system. A generic
working medium possesses a Hamiltonian that is only partially controlled externally:

Ĥ = Ĥint + Ĥext(ω) (1)

where ω = ω(t) is the time dependent external control field. Typically, the internal and external parts do not

commute [Ĥint, Ĥext] 6= 0. Therefore, in general, the evolution operator Û of the system’s operator algebra also does

not commute with Ĥ(t). As a result a state diagonal in the temporary energy eigenstates cannot follow adiabatically.
This fact, which is the source of quantum friction, has a profound effect on the performance of the heat pump(engine)
[1–4, 6].

Limitations of cooling toward absolute zero for systems with finite energy gap above ground state Almost perfect
adiabaticity is the key to low temperature refrigeration. Typically, the internal interaction leads to an uncontrollable
finite gap J in the energy level spectrum between the ground and first excited state. It is shown in the study that
this gap combined with unavoidable quantum friction leads to a finite minimal temperature, termed T min

c
above zero.

The reason is that such a gap, combined with a negligible amount of noise, prevents adiabatic following during the
expansion stage which is the necessary condition for reaching Tc → 0. Theoretically the effect of the noise can be
described by a double commutator with the relevant operator associated with the noise [5]. The dynamics on the
expansion adiabat is analysed to reveal the deviation δ from adiabatic following. A constant adiabatic parameter
allows to solve the equations of motion analytically. The solution shows a periodical alternation between frictionless
solutions to ones with profound friction [7].
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FIG. 1: Left: The minimum temperature as a function of the time allocated to the expansion adiabat τhc (bottom scale)
and l, number of times the system’s trajectory circles around the energy vector (the winding number -upper scale), for the
two noise models. The phase noise has a monotonic decrease of Tc(min) reaching saturation as τhc → ∞ where Tc(min) =

~J
−2kB log(γaΦhc/2)

. (Φhc = [arcsin( ωc

Ωc
) − arcsin( ωh

Ωh

)] ) . Tc(min) of the amplitude noise is monotonically increasing function

of time which means that short expansion times lead to the minimum temperature. If both amplitude and phase noise operate
simultaneously the minimum temperature will be obtained at the crossing point. Right: The heat drawn from the cold bath,
Qc, as a function of cycle time with the time scheduling, ω(t) resulting from the analytical solution on the adiabats . The
decrease of Qc both for short and long times is seen.

The coupled spin system model The model refrigerator is based on a working medium consisting of quantum systems
composed of an ensemble of two coupled spins. The performance of this model resembles a refrigerator with intrinsic



2

friction. We find that the optimal average cooling rate per cycle is exponentially decreasing when approaching
absolute zero, independently of the functional time dependence (scheduling) of the control field. It is shown, that
T min

c
is limited by the zero field splitting.

There are two families of refrigerator cycles; the ”normal” cycles whose cycle times are much larger than period
determined by the energy splitting 2π/Ω, and the “sudden” cycles which are short relative to this period.

Normal cycles The trajectories in the space of the expectation values of the relevant operators are quantized,
according to the number of revolutions the trajectory traverses in that space The inverse minimal temperature
1/T min

c
is approximately linear in the allocated cycle time determined by the maximal cooling rate. The cycles show

non-isoentropic approach to absolute zero, which is to some extent a violation of one of Nernst’s interpretation of the
third law.

Sudden cycles These cycles have no classical analogues. Their energy entropy is much higher than their Von
Neumann entropy, which indicates large off diagonal elements in the density operators in the energy representation.
There is no time even on the isochores to equllibrate. The sudden cycles are far from the adiabaticity condition.
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FIG. 2: Refrigerator cycles in the frequency entropy plane. The Von Neumann entropy SV N = −tr{ρ̂ log ρ̂} (ABCD rectangle)
as well as the energy entropy SE = −

P

pi log pi are shown (pi is the population of energy level i). The hot and cold isotherms
are also indicated. Left: normal cycle , both the expansion adibat and the compression adibat revolve exactly seven periods.
Right: sudden cycle
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Introduction  
The calculation of the diffusion process is performed by setting up a 
discretized partial differential equation (PDE) mass balance of the form:  

 i i
i

c N R
t z

∂ ∂
= − +

∂ ∂
 (1) 

Here shown for the one dimensional case. Ri is the reaction term, ic t∂ ∂  is 
the accumulation tem, and iN z∂ ∂  is the flux term. The molar flux, Ni, can 
be calculated by diffusion theory of Fick also know as Fick’s law: 

 i
i is

dcN
dz

∞= −Ð  (2) 

Which states that the flux is a linear function of concentration profile. Or the 
molar flux may be calculated by the Nernst-Planck (NP) equation: 

 i i i i
is is i s

t Convection
Diffusion Migration

N x x z F x u
c z RT z

φ∞ ∞∂ ∂
= − − +

∂ ∂
Ð Ð  (3) 

Where is
∞Ð  is the diffusivity between component i and the solvent s at 

infinite dilution, also known as the diffusion coefficient. ct is the total 
concentration, zi the ionic charge, z the length, φ the electrical potential, xi 
the mol fraction, and us the solvent velocity towards the wall.  
The advantage of using the NP equation relative to Fick’s law is the term 
related to the electrical potential zφ∂ ∂  also known as the migration term. 
This term is central in electrolyte diffusion where the charges of ions 
become important. One ion will influence the diffusion of other ions due to 
charge interaction. The slower ions drag the faster due to the 
pulling/pushing force from the ionic charge difference. For example a big 
slow diffusing negative ion will drag smaller positive ions and the small 
positive ions will pull the slow negative ion.  
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Improving the theory 
The molal ionic strength (I) in mol/kg H2O is high in a number of 
engineering diffusion relevant cases, eg. CO2 corrosion and CO2 capture and 
storage (CCS). The ionic strength indicates that the solutions behave 
thermodynamically non-ideally. Using the Fick’s law and the NP equations 
may be inaccurate since ideality is assumed and they are therefore only 
strictly valid at I<0.001 mol/kg H2O. In many cases both equations are used 
outside the valid operation window. The NP equation can be extended to 
include activity coefficients by the following as shown by Fosbøl1 

 1i i i i
is ii is i s

t s s

N x x z F x u
c x z x RT z

φ∞ ∞∂ ∂
= − Γ − +

∂ ∂
Ð Ð  (4) 

Where xs is the solvent concentration and Γii is the thermodynamic factor or 
the thermodynamic correction factor, e.g. discussed by Taylor and Krishna2 
for non-electrolyte mixtures. It represents the deviation from ideal diffusion 
behaviour. Comparing the above equation to (3) shows that it requires minor 
extensions to improve the calculation. A more complete but more complex 
diffusion equation can be written as discussed by Fosbøl1. The 
thermodynamic correction factor (TCF) Γii is calculated by  

 
( )( )ln , ,

1 i
ii i

i

T P
x

x
γ∂

Γ = +
∂

n
 (5) 

which is a function of the activity coefficient γi derived with respect to 
composition. In this work the electrolytic Extended UNIQUAC (UNIversal 
QUAsi-Chemical) model by Thomsen et al.3-5 is used in the calculation of 
the activity coefficient. It has previously proven to be acceptable for 
predicting activities of mixed solvent electrolyte systems up high ionic 
strengths. 
It should be noticed that incorporating an activity coefficient model in the 
diffusion equations may still impose limitation of the ionic strength, i.e. the 
Debye-Hückel limiting law activity coefficient model is only valid at I≤0.01 
mol/kg H2O and the extended Debye-Hückel law is valid at I≤0.1 mol/kg 
H2O. The applicable window can be extended slightly by using the Davies 
rule6,7 instead, which is valid at I≤0.3 mol/kg H2O. The Pitzer equation is 
typically valid up to I=6 mol/kg H2O. None of these models are by default 
useable for mixed solvent systems. 
Several fluid effects are not discussed in this study which needs to be 
considered in full diffusion calculations. This is the case even though 
activity coefficients are used in the diffusion equations or not. The effects 
refer to the concentration dependency of the diffusivities and not to the 
actual flux. These are the electrophoretic effect as discussed by Harned and 
Owen8 and Robinson and Stokes9, the viscosity, the porosity, and the direct 
diffusivity concentration dependency discussed by Newman et al.10, 
Vignes11, and Umino and Newman12. 
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An example system CO2-NaOH-MEG-H2O 
In this work example calculations of TCF for the mixed solvent electrolyte 
system CO2-NaOH-Mono ethylene Glycol(MEG)-H2O will be shown. 
Results will be based on the Extended UNIQUAC model given by Fosbøl et 
al.1. With the aim of showing how large an effect the TCF may have on 
diffusion. This is done in order to illustrate the deviation between the 
original Nernst-Planck formulation (3) and the improvements by using (4). 
The TCF gives the difference between the two equations. A Γii of 1.5 
indicates that the flux of the component would be 50% higher in the real 
non-ideal system compared to infinite dilution. The calculation of Γii 
requires a thermodynamic activity coefficient model and a speciation 
routine. The speciation routine calculates the equilibrium composition from 
the given T, P, and concentrations. The thermodynamic model calculates Γii 
as function of T, P, and equilibrium composition.  
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FIGURE 1. Thermodynamic factors, Γii, as function of added NaHCO3 salt. Saturation 
by NaHCO3 is reached at the vertical black line. Imax indicates the maximum ionic strength 
obtained at saturation. 

 
Figure 1 shows an example calculation of TCF for sodium bicarbonate in 
water. Results will be shown for the mixed solvent case and comparison 
between the cases will be made. A number of important conclusions may be 
drawn for the mixed solvent calculations which will be revealed by the 
results of this work. The figure shows that the ionic strength of the systems, 
Imax, is approximately 1.2 mol/kg H2O at saturation. This is an indication 
that the solutions behave non-ideal. The thermodynamic factors, Γii, of i= 
HCO3

- is approximately 1 below 0.3 mol NaHCO3/kg total. It illustrates that 
above this concentration the effective diffusion coefficient is considerable 
different from 1. It is 20 % higher at saturation compared to infinite dilution. 
Γii of i=Na+ is 0.55 at saturation which indicates the effective diffusivity is 
55 % of the value at infinite dilution. Consequently the diffusion of Na+ is 
lower at saturation compared to infinite dilution. The concentration of CO3

2- 
is low in this solution, 0.01 molal, and Γii of i=CO3

2- is consequently also 
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close to one, here 1.02. The concentrations of the remaining components are 
close to infinite dilution and Γii of these compounds are consequently Γii≈1.  
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INTRODUCTION

Four transport coefficients characterize the thermoelectric properties of materials: the thermal
conductivity 

€ 

κ , the thermoelectric power or Seebeck coefficient S, the electric conductivity σ, and the
Peltier coefficient 

€ 

π . The first three are profusely measured and studied: dozens of papers are published
every year. Nevertheless from the last coefficient the number of references are very limited: they do not
reach a paper for year. In this unequal result the Onsager reciprocal relation (ORR) 

€ 

π =TS  has a
decisive influence. In fact the easiness and accuracy of the techniques which measure the Seebeck
coefficient obviates the need for Peltier coefficient measurements. But the ORR which is founded in
statistical mechanics needs to be experimentally checked in a few cases at least [1]. Therefore the
experimental confirmation of this relation depends on the preciseness and accuracy of Peltier coefficient
measurements. A review of this subject has been developed in this work.

In order to describe the thermoelectric processes in an advantageous way, the observable
formulation has been used [2-4]. This is characterized by the electric potential measured at the probe
terminals 

€ 

Δψ  and for the heat flux which the conductor laterally dissipates 

€ 

JQ (figure 1). In this

formulation both the electrochemical potential of the electrons and the energy flux play the central role.
The energy balance provides the basic relationships among the observables and the Peltier and Thomson
coefficients.
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Figure 1. Observables 

€ 

Δψ =ψ II −ψ I  and 

€ 

JQ  in the conductor X. The terminals of probes Z are at the

same temperature To.

The interest for studying the Peltier coefficient is also due to this coefficient forms part of the
expressions which define both the Thomson coefficient 

€ 

τ  and the figure of merit 

€ 

ZT . The first combines
the effect of two basic coefficients 

€ 

τ = dπ dT − S . And the second relates three of them 

€ 

ZT =σπ 2 Tκ .

When one applies the ORR, we deduce the well-known expressions 

€ 

τ =T dS dT( )  y 

€ 

ZT =σS 2T κ . The

first provides the bases to evaluate 

€ 

dS dT  from measurements of Thomson’s coefficient. And the second
is relevant to technological questions of great importance, such as the construction of solid state energy



conversion devices. Materials with high thermoelectric figure of merit are promising candidates for use in
thermoelectric power generation.

THEORY

Transport equations
The evaluation of the transport coefficients is carried out in filiform systems from the

measurement of several observables. In these wires all the flows and forces are parallel to the x-direction.
The transport equations of the thermoelectric phenomena are usually expressed in a local formulation

€ 

JU =κA dT
dx

+ π −
˜ µ e
e

 

 
 

 

 
 I (1)

€ 

d ˜ µ e e( )
dx

= S dT
dx

−
1
σA

I (2)

where 

€ 

JU  is the energy flux, A is the cross-section area, 

€ 

˜ µ e  is the electrochemical potential of the
electron, e > 0 is the magnitude of the electron charge, and 

€ 

I  is the electric current. Here, the positive
direction of the fluxes 

€ 

JU  and 

€ 

I  is the opposite of the coordinate 

€ 

x  (Figure 1).

To evaluate the transport coefficients of a material we need to know the local values of the
following quantities 

€ 

JU ,  T ,  ˜ µ e  and 

€ 

I . Some of them can be directly measured, i.e. T and I. The other

quantities need to be determined from the observable electric potential 

€ 

Δψ =ψ II −ψ I  measured between
the terminals of probes Z connected to sections I and II, and the heat flux 

€ 

JQ  which laterally departs

from the conductor towards the surroundings between the sections I and II (Figure 1). These two
observables are defined next.

 Observable electric potential
 The observable electric potential 

€ 

ψ  measured at the terminals of probes Z at the temperature 

€ 

To
is closely related to the distribution of the electrochemical potential 

€ 

˜ µ e  of the electrons along the
conductor.[2-4]

€ 

d ˜ µ e e( ) = SZdT − dψ , (3)

Then the second transport equation, equation (2), can be transformed to

€ 

dψ
dx

= SZ − SX( ) dTdx
+
1
σA

I . (4)

When the probes are of the same material as the conductor, that is 

€ 

Z ≡ X , equation (4) simplifies
to 

€ 

dψ = IdR , where 

€ 

dR = dx σA  is the electric resistance of the element 

€ 

dx  of conductor X. That is,
when 

€ 

Z ≡ X  the observable electric potential difference measures the ohmic drop independently of the
actual temperature distribution in the conductor.

Energy balance
Under steady-state conditions, and for the wire geometry here considered, the energy balance in

the wire between two cross-sections I and II is presented as 

€ 

JU
II − JU

I = JQ , where 

€ 

JQ  is the heat flux that

laterally departs between the sections I and II from the wire to the surroundings (Figure 1). From the
result 

€ 

JU
II − JU

I = JQ  and equation (1) we obtain

€ 

Δ κA dT
dx

 

 
 

 

 
 + IΔπ − IΔ

˜ µ e
e

 

 
 

 

 
 = JQ , (5)

which can be used to evaluate the Peltier and Thomson coefficients.



Single wire
When 

€ 

I = 0, from equation (4) we have

€ 

SZ − SX =
∂Δψ
∂T II

 

 
 

 

 
 
T I , I=0

. (6)

This expression is commonly used to evaluate 

€ 

SZ − SX. Note that only differences can be determined but
not their absolute values. In these measurements four leads are attached to the sample in order to provide
the values of 

€ 

Δψ , 

€ 

T I  and 

€ 

T II .

To evaluate the Thomson coefficient 

€ 

τ = dπ dT − S  we consider two sections I and II in a

conductor X at different temperatures 

€ 

T I ≠T II  (Figure 1). If the probes and wire are of the same

material, 

€ 

Z ≡ X , equation (4) can be integrated as 

€ 

Δ ˜ µ e e =

€ 

SdT − Δψ
T I
T II

∫ . Combining this result and

equation (5) we find the energy balance

€ 

Δ κA dT
dx

 

 
 

 

 
 + I τdT

T I

T II

∫ + IΔψ = JQ , (7)

that allows us to evaluate the Thomson coefficient from the observables 

€ 

dT I dx , 

€ 

dT II dx ,

€ 

 Δψ = RI
and 

€ 

JQ .

Couple X/Y: Peltier’s coefficient measurements
Consider a couple X/Y (Figure 2) where an electric current 

€ 

I  is flowing. The temperature
distribution evolves towards a steady-state with a maximum (or a minimum) at the junction. The energy
balance at the junction is expressed by 

€ 

JU( )X ≡ JU( )Y where the subscripts X and Y denote each one of

the two wires. The equilibrium for distribution of matter at the junction is expressed by 

€ 

˜ µ e( )X = ˜ µ e( )Y .

Then, from equation (1) we deduce 

€ 

π Y − π X( )I =

€ 

A κ X dTX dx( ) −κ Y dTY dx( )[ ]  and we can evaluate the

Peltier coefficient from the measurement  of the two temperature gradients  in the junction region. As far
as we know, the difference of Peltier coefficients has never been measured  using this equation.

X

 T

Y ←I

 x

€ 

← JU

Figure 2. Peltier’s effect refers to the temperature profile along a couple X/Y. At the steady-state the
junction temperature reaches a maximum (or a minimum).

The usual way of determining  

€ 

Δπ = π Y − π X  considers the couple at a steady-state while an
electric current 

€ 

I  is flowing (Figure 3). Let I and II be two sections at the same temperature

€ 

T =T I =T II. Then as 

€ 

Δ ˜ µ e e( ) = −Δψ , equation (5) can be written

€ 

Δ κA dT
dx

 

 
 

 

 
 + IΔπ + IΔψ = JQ . (8)

Therefore from the observables 

€ 

dT I dx ,  dT II dx ,

€ 

Δψ and JQ   we can calculate  

€ 

Δπ =

€ 

π Y − π X. This

energy balance can also be expressed in terms of the electric resistance



€ 

Δ κA dT
dx

 

 
 

 

 
 + IΔπ + RI 2 + I SY − SX( )

T I

T II

∫ dT = JQ , (9)

where 

€ 

R = RX + RY,  

€ 

RX = dx σ XAXxI
xIII

∫  and 

€ 

RY = dx σ YAYxIII
xII

∫ .

X

 T

 Z Z

 I  II
Y ←I

 

€ 

↑

JQ

 x

 ψI  ψII

 III

 

€ 

T I
 

€ 

T III

 

€ 

T II

Figure 3. To determine 

€ 

π Y − π X the observables 

€ 

dT I dx , 

€ 

dT II dx ,  

€ 

Δψ , and 

€ 

JQ  need to be measured.

The sections I and II have the same temperature 

€ 

T I =T II .

REVIEW OF EXPERIMENTAL WORKS

In the previous section several expressions that relate the transport coefficients with the
observables 

€ 

Δψ  and 

€ 

JQ  have been deduced. Some of them are well-known and have been successfully

applied for evaluating transport coefficients, as in thermal conductivity 

€ 

κ , thermoelectric power 

€ 

S  and
electric conductivity 

€ 

σ . However we cannot say the same when we refer to Peltier and Thomson
coefficients. In the literature we find works where other energy balances have been applied. This subject
will be discussed in a review of several selected papers [5-8].

The direct measurements of the Peltier coefficient are usually based on energy balances. This
makes them difficult and rare. In fact we find very few works with measurements on this coefficient.
Some of these papers use couples X/Y and apply the energy balance under steady-state isothermal

conditions. Then, the Fourier term 

€ 

Δ κA dT dx( )[ ]  and the Seebeck term 

€ 

I SY − SX( )T I
T II

∫ dT  of equation

(9) disappear. But this temperature distribution does not seem to be possible because at the junction

€ 

dTX dx ≠ dTY dx  due to 

€ 

π X ≠ π Y (see figure 2).

Finally, from the lack of confidence in the values of the Peltier coefficient we conclude that the
Onsager reciprocal relation still needs to be experimentally confirmed.
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Technical bronzes tend to form both macrosegregation and microsegregation during DC-
casting due to the particular phase diagram situation, kinetics of phase transformation, and 
relative velocity between liquid and solid. As a result a heterogeneous cast microstructure 
forms. This can be observed after casting even in wrought alloys with a tin content from 4 to 8 
wt.% Sn. Since the tin rich phases are brittle at room temperature as well as at hot working 
temperature, workability deteriorates. To describe solidification of these alloys, the ternary 
system Cu-Sn-P in the Cu-rich corner is investigated. For that, experimental investigations 
have been performed to define on the one hand the liquidus surface in detail and, besides, to 
confirm the ternary eutectic point in this region of the phase diagram. This is of special 
interest for industry, because the ternary eutectic point it is thought to be responsible for 
specific rigidity changes in technical bronze alloys. 
 
In the presented work, the thermodynamics of the system Cu-Sn-P in the Cu-rich corner has 
been studied by computational thermodynamics and experimental investigations. Figure1 
shows a 3D projection of the liquidus surface of the Cu-rich part of the ternary phase diagram 
Cu-Sn-P where the front view displays the binary Cu-Sn phase diagram up to 35 wt.% Sn. 
The isothermal lines (black fine lines) and mono variant lines (colored lines) of the liquidus 
surface are drawn based on the calculations performed with Thermo-Calc. 
 

 
Figure 1: 3D liquidus surface of the ternary phase diagram Cu-Sn-P in the Cu rich-corner up to 35 
wt.% Sn and 14 wt.% P based on calculations with Thermo-Calc (database CuSnII 
[THERMOCALC 05]). The colored lines show the monovariant lines of the liquidus surface and the 
front view the binary system Cu-Sn. Monovariant lines corresponding to the (1) peritectic reaction 
L + α → β  (black line),   (2) peritectic reaction L + β → γ  (green line), (3) peritectic reaction  
γ +  L → ε  (bright blue line),  (4) eutectic reaction L → Cu3P + ε (pink line),  (5) eutectic reaction 
L → Cu3P + γ (blue line), (6) eutectic reaction L → Cu3P + α  ( purple line), (I)  the ternary eutectic 
point (red point). α = Cu (max. Sn 15.8 wt.%, P 2 wt.%); β ~ Cu17Sn3; γ ~ Cu3Sn; δ ~ Cu41Sn11; 
ε ~ Cu3Sn; ξ ~ Cu10Sn3 (nomenclation taken from [EFFENBERG 07]). 
 
DSC (Differential Scanning Calorimetrie) –measurements, annealing and diffusion 
experiments have been performed for the binary, Cu-Sn and Cu-P, and the ternary, Cu-Sn-P, 
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systems. Phase concentrations and phase regions where detected by SEM micrographs, LM-
micrographs, and microprobe measurements. 
 
For the binary systems, the performed DSC measurements confirm the published phase 
diagrams so far. It was possible to obtain all expected phase transformations by DSC 
measurement for CuSn4, CuSn20, CuP2, and CuP5, except for the ε phase. But it has to be 
mentioned that there are some discrepancies observed between different statements in 
literature [MASSALSKY 86], Thermo-Calc calculations, and the performed experiments. For 
example the liquidus temperature in the thermodynamic calculation is partly underestimated 
compared to both, literature and the obtained DSC measurements. 
 
In addition, annealing experiments have been performed. Since P tends to evaporate at high 
temperature, a closed cylindrical geometry was used. For the ternary samples, a core of 
CuSn20P6 was combined with a pure copper casing and a combination of CuSn20 (as casing) 
and CuP8.3 (as core) was investigated. The sample shows a fine structured matrix consisting 
of α−δ eutectoid and dendrites of Cu3P which is consistent with the expected phases based on 
literature. As published phase diagram data proposes, δ does not contain any P and Cu3P no 
Sn. The temperature range and sample concentrations for the experimental study were chosen 
to lie in the area close to the ternary eutectic point to prove already published data and to gain 
more information about the ternary eutectic point. After annealing, the samples were 
quenched in cold water and prepared for SEM investigations. 
 
Figure 2 shows a sample with a core of CuSn20P6 combined with a pure copper casing after 
annealing at 648 °C for 6 days and subsequently quenching. The sample got liquid at least in 
the centre (6, 5).  
 

 
 
Figure 2: The upper picture shows a SEM picture of the diffusion sample at 648 °C. The 
numbers indicate the position of the different phase regions displayed in the phase sequence at 
the bottom of the figure. The observed phases are: (1) Cu, (2) α, (3) Cu3P, (4) β. (5) indicates 
the three phase region Cu3P+α+β showing the concentration of CuSn14.7P4.6, and (6) the 
three phase region Cu3P+α+β showing the concentration of CuSn16.5P4.4. The red broken 
line marks the expected boundary of the liquid region. 

 
In principle, the obtained results show good agreement with published and assessed data for 
the binary phase diagram as well as the ternary one. The diffusion experiments performed 
indicate that there is a ternary eutectic point in the Cu-rich corner of the Cu-Sn-P system at 
approximately CuSn15P5. Thermo-Calc (database CuSnII) and Miettinen [MIETTINEN 01] 
propose this point to be at around 644 °C. Based on the observed phase distributions up to 
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now, this point can be confirmed to lie between 648 °C and 642 °C. In addition, the γ phase 
was detected in a ternary sample in the presented study although former experimental work 
performed for the ternary system by Takemoto [TAKEMOTO 87] did not mention the 
occurrence of the γ phase. The ε phase was not observed in the presented study, neither in the 
DSC measurements nor in the diffusion experiments. According to literature and industry, this 
phase occurs after a very long transformation time. Due to this fact it is reasonable to ignore it 
for technical applications. 
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There remains a large variety of ways of presenting thermodynamics, associated with a large variety of 
understanding its foundations. This is another way to say that these foundations are still not clear, or at the very 
least not interpreted in a uniform way by the scientific community. This situation may cause confusion. The 
difficulties which arise are the differences in exposure between the phenomenological approach and the 
statistical approach, the definition of the new quantities (Q, U, S), the understanding of a privileged direction of 
evolution and the relations of the whole with standard mechanics. 
 
It seems to us that the duality between the two microscopic and macroscopic points of view is the key to seize in 
a unified way the two pillars of thermodynamics that are: - new quantities as compared to mechanics (first law), 
and - the existence of a privileged direction of evolution (second law). We present the broad outline of this 
analysis, useful for the understanding of what is thermodynamics, and not usually exposed in all its generality. 
This is for us at the moment in good part a physical understanding in the meaning of Feynmann: “it is a 
completely un-mathematical, imprecise and inexact thing, but absolutely necessary for a physicist”! This 
presentation may also be useful to discuss some current trends in thermodynamics. 
 
- definition of the new quantities 
It rests on a distinction between two scales. If the system is reduced to one or a few particles, one cannot make 
the difference between heat and work. For a system made up of a great number of particles, one makes a 
separation between the macroscopic level (as summarized for example by the position of the barycentre of the 
system and its contours) and the microscopic level (position of the individual particles). In this separation, one 
admits that the movements of the individual particles are negligible with respect to the overall movement or do 
not affect it. One can thus to define heat (transfer of energy that does not affect the position of the barycentre of 
the system - nor its contours), in opposition to work (transfer that modifies them), internal energy (sum of the 
kinetic and potential energies of the particles referred to the barycentre; it equilibrates the energy balance when 
one takes into account the positions and movements at microscopic scale), and the entropy (a measurement of 
energy which is not associated to work), normalized to temperature (“energy” of a unit system, in 
correspondence with the system considered, with no interactions between its components, i.e. with no energy 
effect of its arrangement). By dividing dQ (that includes both position- and velocity- related energy) by T, one 
mostly restricts dS to the energy properties associated to the microscopic arrangement of the system (a higher Q 
exchange at a higher T will result in the same change in arrangement). There remain the vibrational and 
rotational energies that are not of a purely combinatorial character; but cannot be computed in the macroscopic 
work, in agreement with the above definition of entropy. Thus, two correlated definitions of entropy may be 
given: measurement of energy that is not associated to work, or, equivalently, energy associated to microscopic 
arrangement of the system, plus vibration and rotation terms. 
 
- understanding of a privileged direction of evolution 
The microscopic level also corresponds to the level where one cannot control (neither practically nor within 
one’s mind) the parameters of the system (positions of the individual particles). The possible evolutions are in 
correspondence with the most probable initial conditions. If these were finely controlled, one could generate 
evolutions that would be contrary to the second law. The practical resolution of the equations of mechanics for 
systems with a great number of particles leads to irreversibility (loss of the link with the initial conditions, effect 
of instabilities, sensitivity to the initial conditions that are known with a limited precision, influences of various 
types etc). 
 
- consequences 
It will be said that entropy is not intrinsic (it is not attached to a particle as its mass is for example), and that heat 
transfers are actually connected to a change of the combinatorial arrangement of the system. The definition and 



properties of entropy can be understood but within a single package comprising both the first and second laws of 
thermodynamics. 
 
In short, concepts of heat, internal energy, entropy, privileged direction of evolution (and all the construction 
that follows, i.e. “a” thermodynamics), appear each time that, for a mechanical system, one makes a division 
between two levels of scale and a division of our knowledge (and our ignorance) between these two levels. The 
transition from one scale to another cannot avoid in general making some assumptions of statistical nature in 
addition to the axioms of the mechanical starting level. The separation can be made everywhere one wants (one 
can build several “thermodynamics” according to the place where one cuts between various scales). For instance, 
one can decide to observe the overall movement of a mountain (the author is a also geologist!) with respect to 
which small movements at local scale (even macroscopic on a human scale!) are “heat transfers”, and define 
thermodynamic quantities for the entire mountain. 
 
Ways of research are proposed. At the conceptual and mathematical level: - it is necessary to wonder first: where 
do we put a limit, when do we decide to neglect the movement of a “microscopic” entity as compared to a 
“macroscopic” movement? - it is necessary to properly write the distinction between heat and work, and all that 
follows, as a function of the increase in the size of the system, for the various possible cases. Does this approach 
give an understanding of the non-equilibrium states? At the practical level: we have a method to rigorously 
define the quantities adapted to such new field (nano-materials?). Without forgetting the teaching level! 
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Mesoscopic Continuum Physics introduces variables describing the microstruc-
ture – like orientation of crystals – into the domain of the fields, thus treating
them equivalently to space. The theory of Mesoscopic Continuum Physics has
been reformulated, resulting in more compact equations, which are easier to
understand. In this new formulation the balance of spin shows up naturally as
component equations of the balance of momentum, this is an advantage over
the standard formulation, in which it is postulated separately.
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Limiting structure of thermodynamic functions of gaseous plasmas is under consideration in the limit of extremely 
low temperature and density. Remarkable tendency, which was claimed previously [1-3], is carried to extreme. The point 
is that the discussed limit (T → 0; n → 0) is carried out at fixed value for chemical potential of electrons (μel = const) or 
“atoms” (μa = Zμe + μi = const) or “molecule” (μm↔2a = 2μa = const) etc. In this limit both equations of state (EOS) 
thermal and caloric ones, obtain almost identical stepped structure (“ionization stairs” [3]) when one uses special forms 
for exposition of these EOS as a function of electron chemical potential: i.e. PV/RT for thermal EOS and U − (3/2)PV for 
caloric EOS vs. μel. Examples of this limiting structure are exposed at figures 1 and 2 for thermal and caloric EOS of 
lithium and helium plasmas [4-6]. For rigorous theoretical proof of existing the limit, which is under discussion (Saha-
limit) in the case of hydrogen see [7,8] and references therein. 

 

 
 

Figure 1.  Thermal EOS of lithium plasma in quasi-chemical limit (figure from [4,6]). Compressibility factor PV/RT ≡ 
P/(nLikT) as a function of (negative) value of electron chemical potential. Notations: 1 – isotherm T = 0; 2, 3 – isobars (Р 
= const); arrows − elements of “intrinsic energy scale” for lithium: I1, I2, I3 − lithium ionization potentials; 4 − saturation 

vapour boundary {(μе)0 = − (ΔsH0 + I1)/2}. (Isobars 2, 3 are calculated via code SAHA-IV [9] with neglecting of 
equilibrium radiation contribution) 

 

 
 

Figure 2.  Caloric EOS of helium plasma in quasi-chemical limit (figure from [6,10]. Complex U – (3/2)PV as a function 
of (negative) value of electron chemical potential. Notations: 1 – isotherm T = 20 000 K; 2 – T = 10 000 K; 3 – T = 0 K; 
arrows − elements of helium “intrinsic energy scale”: I1, I2 − helium ionization potentials; (Isotherms 1, 2 are calculated 
via code SAHA-IV [9] with neglecting of equilibrium radiation contribution) 

mailto:ilios@orc.ru
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The same stepped structure appears in the zero-temperature limit in any molecular gases, for example hydrogen [4][6].  
 

 
 

Figure 3. Thermal EOS of hydrogen plasma in quasi-chemical limit (figure from [4]) Compressibility factor PV/RT ≡ 
P/(nLikT) as a function of (negative) value of electron chemical potential. Notations: 1,2,3,4 – isotherms T = 4000, 2000, 
1000, 0 K correspondingly. I1 = Ry − hydrogen ionization potential. (D2 + I)/2 – position of “dissociation step” at 
electron chemical potential scale. Isotherms 1-3 are calculated via code SAHA [11] with neglecting of equilibrium 
radiation contribution.  

 
This limiting structure appears within a fixed (negative) range of μel (μel** ≥ μel ≥ μel*). It is bounded below by 

value of major ionization potential (μel* = −IZ = −Z2Ry) and above by the value depending on ionization potential and 
sublimation energy of substance {μel** = − (ΔoHS + I1)/2}. Binding energies of all possible bound complexes (atomic, 
molecular, ionic and clustered) in its ground state are the only quantities that manifest itself in meaningful details of this 
limiting picture as location and value of every step. The energy of macroscopic binding – the heat of condensation at 
T = 0 – supplement this collection. At the same time there are no such steps for exited states of such bounded complexes 
(ions, atoms, molecules and clusters). Altogether, all energies mentioned above form “intrinsic energy scale” [3][10] for 
any substance.  

In the zero-temperature limit all thermodynamic differential parameters (heat capacity, compressibility, etc.) obtain 
their remarkable δ-like structures (“thermodynamic spectrum” [3][10]). Both kinds of such “spectrum” became apparent: 
i.e. “emission-like spectrum” for heat capacity (fig. 3) and “absorption-like spectrum” for the isentropic coefficient - 
(∂lnP/∂lnV)S (fig. 4). It should be stressed again that all “lines” of these “thermodynamic spectrum” are centralized just 
at the elements of the “intrinsic energy scale” – binding energies of ground states for all bound complexes in the system. 

 

 
 
Figure 3. Limiting structure for differential thermodynamic quantities (“thermodynamic spectrum”) in 
quasi-chemical limit Т → 0 (figure from [4,6]). Isobaric heat capacity of lithium plasma as a function of 
(negative) value of electron chemical potential. Notations: 1, 2 – isobars (10−4 Pa and 1 MPa); arrows − 
elements of “intrinsic energy scale” for lithium: I1, I2, I3 − lithium ionization potentials. (Isobars 1,2 are 
calculated via code SAHA-IV [9] with neglecting of equilibrium radiation contribution) 
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The limiting EOS stepped structure (“ionization stairs”) of gaseous zero-Kelvin isotherm is generic prototype of 
well-known “shell oscillations” in EOS of gaseous plasmas at low, but finite temperatures and non-idealities [2]. At the 
same time this limiting form of plasma thermodynamics could be used as a natural basis for rigorous deduction of well-
known quasi-chemical approach (“chemical picture”) in frames of asymptotic expansion around this reference system. 
The point is that this expansion must be provided on temperature at fixed chemical potential, in contrast to the standard 
procedure of expansion on density at constant temperature [12,1]. 

 

 
 

Figure 4. Limiting structure for differential thermodynamic quantities (“thermodynamic spectrum”) in 
quasi-chemical limit Т → 0 (figure from [4,6,10]). Isentropic coefficient of lithium plasma (∂lnP/∂lnV)S as 
a function of (negative) value of electron chemical potential. Notations: – as at figure 3. Ideal-gas value 
(∂lnP/∂lnV)S = 5/3 is noted. 
 
The gaseous branch of zero-Kelvin isotherm U0

gas(μ) could be naturally conjugated with associated condensed 
branch U0

crystal(μ). Due to the choice of chemical potential as a ruling parameter this combination creates complete and 
totally meaningful non-standard “cold curve” for any substance {U0(μ) instead of U0(ρ)}. The point is the appearance of 
stable thermodynamic gaseous branch for this “cold curve”, which reflects schematically all reactions (ionization, 
dissociation etc.) and phase transitions which are realized at the system. Besides, the stable part of new combined “cold 
curve” it could be supplemented with additional metatstable branches, corresponding to overcooled vapour from gaseous 
part, and extended crystal from condensed part (figure 5) [13]. Another advantage of new representation for cold curve is 
natural identity of all transformations mentioned above (ionization, dissociation and phase transitions). It approve widely 
used interpretation of finite temperature ionization and dissociation as a “smoothed” phase transitions [10].  

 

 
 

Figure 5. Modified “cold curve” (isotherm T = 0) and critical isotherm ( kТcr ≈ 0.53 eV) in modified one-component 
plasma model on uniformly-compressible compensating background {OCP(~)} [14]. Dimensionless internal energy, 
UOCP/(Ui

(id) + Ue
(id)), as function of “atomic” chemical potential (electroneutral combination of chemical potentials for 

ion and electrons (background)). Two metatstable branches are exposed: overcompressed vapour and extended solid 
completed by spinodal points (figure from [3,10]). 
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Remarkable limiting structure of thermodynamics for real substances, which is under discussion, could manifest 
itself also in simplified classical models. Similar “ionization stairs”, “thermodynamic spectrum” and modified “cold 
curve” was predicted [3,13,10] for modified one-component ionic model on uniformly-compressible compensating 
background OCP(~) [14,15] and for two-component classical ionic model with Glauberman’s [16] potential 
{Vij(r) ≡ ZiZje2[1 – exp(– r/σ)]/r} [4] and for classical charged hard- and soft-spheres models. In the first model OCP(~) 
there is no electron-ionic associations on definition. The only transformations permitted in the model are three 1st-order 
phase transitions between solid, liquid and gas-like states. Non-standard cold curve of OCP(~) with sublimation jump 
and metatstable portions are shown at fig. 5. 

All present statements about remarkable limiting structure of thermodynamic functions in zero-temperature limit for 
single substances are valid also in application to the chemical compounds. In this case one-dimensional structures: 
“ionization stairs”, modified “cold curve” and “thermodynamic spectrums” turn into more complicated two-dimensional 
figures composed from discontinuities (steps) and ideal-gas planes. Features and properties of such limiting structures 
are non-investigated at the moment.  

New representation for cold curve (isotherm T = 0), which is introduced in present paper, has advantage for solution 
of theoretical problem of correct deducing of quasi-chemical representation (so-called “chemical picture” – ensemble of 
“free” simple and complex particles, atoms, molecules, ions and electrons with weak effective interaction) from rigorous 
physical representation (ensemble of nuclei and electrons with strong Coulomb interaction). Both “ionization stairs” in 
thermal and caloric EOS are natural zero-order terms in systematic asymptotic expansion for thermodynamic functions 
in the limit T→ 0 by the small parameter λ ~ exp{– const/Т)} at constant value of chemical potential [3,4,10]. It should 
be noted that well-known presently accepted traditional theoretical approach uses asymptotic expansion in terms of 
activities at constant temperature (for example [12]). Rigorous asymptotic expansion by functions of temperature in the 
limit T→ 0 (SAHA-limit) is developed for hydrogen in papers [7,8] et al. for the region of atomic chemical potential 
corresponding to the case of electron-ion-atomic plasma. It should be stressed that desirable approach should develop 
asymptotic expansion in the limit T→ 0 simultaneously for all values of chemical potential within mentioned above 
“energy scale” from the state of full ionization (μel ~ – IZ) up to the saturation point and including the regions of all 
stages of ionization and atoms and molecules formation. 
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The thermodynamic modelling of petroleum fluids is a highly challenging task for engineers. Indeed, such mixtures 
contain a huge number of various compounds, such as paraffins, naphthenes, aromatics, gases (CO2, H2S, N2, …), 
mercaptans and so on. A proper representation involves to accurately quantifying the interactions between each pair of 
molecules, which is obviously becoming increasingly difficult if not impossible as the number of molecules is growing. 
To avoid such a fastidious work, an alternative solution lies in using a predictive model, able to estimate the interactions 
from mere knowledge of the structure of molecules within the petroleum blend. To build such a model, we have 
combined the 1978 version of the Peng-Robinson (PR) equation of state (EOS) [1] with a group contribution (GC) 
method [2-10] allowing the estimation of the interactions between molecules: 
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P is the pressure of the N component-mixture, v is its molar volume, T is its temperature and z is the molar fractions 
vector. ai(T) and bi are specific parameters for pure component i. kij(T), whose choice is difficult even for the simplest 
systems, is the so-called binary interaction parameter characterizing molecular interactions between molecules "i" and 
"j". The common practice is to fit kij so as to represent the vapor-liquid equilibrium data of the mixture under 
consideration. Such a solution works well for binary systems but can not be applied to a petroleum fluid containing 
hundreds of compounds and therefore thousands of binary interaction parameters. In this study, in order to obtain a 
predictive model and to define the PPR78 (predictive, 1978 PR EOS) approach, kij, which depends on temperature, is 
expressed in terms of group contributions, through the following expression: 
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Ng is the number of different groups defined by the method (for the time being, 16 groups are defined and Ng = 16). αik 
is the fraction of molecule i occupied by group k (occurrence of group k in molecule i divided by the total number of 
groups present in molecule i). Akl = Alk and Bkl = Blk (where k and l are two different groups) are constant parameters 
(Akk = Bkk = 0). These parameters have been determined in order to minimize the deviations between calculated and 
experimental fluid phase equilibrium data (liquid-vapour, liquid-liquid, azeotropic and critical data) from a huge binary 
data base (nearly all the available fluid phase equilibrium data of binary systems available in the open literature have 
been collected) using a well-chosen optimization procedure. 
 
As a general rule, the restitution of these experimental data points is quite satisfactory for a predictive model [10]. The 
following table gives an overview of the absolute and relative average deviations (respectively AAD and RAD) for the 
66016 binary data points considered: 
 
Table 1. Deviations between experimental phase equilibrium data of binary systems and their estimation by the PPR78 

model. 

 AAD RAD 
Number of 

experimental data 
Liquid molar fractions 0.018 6.3 % 36797 
Vapour molar fractions 0.011 6.9 % 28152 
Critical molar fractions 0.016 5.8 % 1067 

Critical pressure 6.3 bar 3.4 % 1067 



 
Once the group contributions i.e. the Akl and Bkl parameters estimated, the PPR78 model can be used as a purely 
predictive approach, to model the fluid phase behaviours of petroleum fluids. In that way, we have tested out the 
capacity of PPR78 on many synthetic fluids found in the literature and we have got quite accurate results in most of the 
cases [10]. Figure 1 here below, shows predicted phase envelopes of some natural gases and oils. 
 
 
Figure 1. Phase envelopes of three synthetic petroleum fluids (crude oils and condensate gas) predicted by the PPR78 
model. (+) experimental bubble or dew pressures, (�), experimental critical point, (�), predicted critical point. Line: 

predicted bubble and dew curves. 
 

300.0 500.0
  0.0

 40.0

 80.0

T/K

P/bar

methane = 24.83 % 
n-octane = 60.20 % 
meta-xylene =   1.98 % 
cyclooctane =   3.01 % 
n-nonane =   9.98 % 

 

100.0 140.0 180.0 220.0
 0.0

40.0

80.0

T/K 

P/bar

azote = 13.47 % 
methane = 81.18 % 
ethane =   4.83 % 
propane =   0.52 % 

 

120.0 160.0 200.0 240.0 280.0
  0.0

 40.0

 80.0

T/K

P/bar
N2 =   0.772 % 
CO2 =   1.700 % 
methane = 84.446 % 
ethane =   8.683 % 
propane =   3.297 % 
isobutane =   0.293 % 
n-butane =   0.589 % 
2-methylbutane =   0.084 % 
n-pentane =   0.086 % 
n-hexane =   0.050 % 

 
 
 
In addition, satisfactory predictions of swelling experiments (see figure 2) and accurate estimation of the MMP 
(minimum miscibility pressures) can be obtained from PPR78. 
 
 

Figure 2. Swelling of a crude oil by pure CO2 at two different temperatures. (�), experimental bubble or dew point, 
(�), predicted critical point. (∗), predicted first contact miscibility pressure. Line: predicted bubble and dew curves. 
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Abstract

Probability distributions which can be obtained from superpositions of Gaussian distributions of
different variances v = 2 play presently a favored role in quantum mechanics and in theory financial
markets [1]. In general, such superpositions do not necessarily obey the Chapman–Kolmogorov
semigroup relation for Markovian processes because they often introduce memory effects. In
this talk we derive the general form of the smearing distributions in v which do not destroy the
semigroup property. The presented smearing technique has two immediate applications which we
wisch to discuss [2,3].

Firstly, our approach permits simplifying the system of Kramers–Moyal (and Fokker–Planck)
equations for smeared and unsmeared conditional probabilities. In the latter case the dynamics of
the smearing distribution is explicitly separated from the dynamics of the transitional amplitude
which a desirable starting point, for instance, in quantum optics or in superstatistics.

Secondly, our smearing technique can be conveniently implemented in the path integral calculus.
This is because in many cases, the superposition of path integrals can be evaluated much easier
than the initial path integral. To put some flesh on the bar bones we will present three simple
examples [2,3]; “microcanonical” smearing, Heston’s stochastic volatility model and relativistic
scalar particle. We will also briefly comment on the possibility of extension of the presented
technique to quantum mechanics and quantum field theory. Finally, some comments will be also
added on a natural appearance of the Tsallis distribution in the scheme.

[1] P. Jizba, H. Kleinert and P. Haener, [arXiv:0708.3012]; will apper in Physica A

[2] P. Jizba and H. Kleinert, [arXiv:0712.0083]

[3] P. Jizba and H. Kleinert, [arXiv:0802.0695]; Phys. Rev. E 78 (2008) 031122
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Continuous Topological Evolution and its application to non-equilibrium Ther-
modynamic Systems and Irreversible processes, was conceived using Cartan’s meth-
ods of exterior differential forms, evaluated on partially ordered differentiable vari-
eties - not the diffeomorphic geometric equivalences of tensor analysis. Topological
non-equilibrium thermodynamic systems are encoded in terms exterior differential
1-forms with topological properties dependent upon the Pfaff Topological (not geo-
metrical) Dimension (PTD). The process direction fields (for both reversible and
irreversible processes) are defined in terms of the coefficients of exterior differential
3-forms, or currents, on 4D pre-geometric (no metric) space-time. Unlike the Am-
perian currents of electromagnetism, it was discovered that there are two 3-form
currents that exist only in non-equilibrium systems where PTD > 2. These cur-
rents do not necessarily obey conservation laws. The first 3-form (1969) was called
the 3-form of Topological Spin. The second 3-form (1976) was called the 3-form of
Topological Torsion. This Torsion current (when PTD=4) is inextrincably linked
with Turbulence and irreversible decay in fluid flow; hydrodynamic wakes are ev-
idence of when the PTD=3. Examples of emergence of systems with PTD=3 in
dissipative systems of PTD=4 give formal credence to Prigogine’s conjectures. In
1964, the concept of a (topological) Spin Current was an exotic idea, but now, the
concept of a Spin Current has entered the practical world of nanometer physics
called "Spintronics".
The Torsion current is an artifact of processes in non-equilibrium systems, and

can contain components that have been described by E. Cartan as isotropic (macro-
scopic) spinors, or complex vectors of null amplitude and complex eigenvalues. The
fact that the root structure (1 positive, 2 complex) above the Critical Isotherm for
a van der Waals gas is evidence of such spinors. The existence of processes with
spinor components implies the existence of anti-symmetries, and are the cause of
(topological) fluctuations and irreversible dissipation.
The use of Cartan’s magic formula in terms of the Lie differential with respect

to a process acting on a thermodynamic systems encodes the idea of Continuous
Topological Evolution as a cohomological statement of dynamics: the result is a
dynamical-topological-universal representation of the First Law of Thermodynam-
ics.
This perspective of Continuous Topological Evolution leads to a number of

significant results:
1. Topological change is a necessary condition for thermodynamic irreversibility.
2. Continuous Topological Evolution establishes a logical basis for thermody-

namic irreversibility and the arrow of time without the use of statistics. Evolution
from a disconnected KCT0 topology to a connected topology can be continuous and
irreversible, but evolution from a connected topology to a disconnected topology
cannot be continuous.
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3. An irreversible process requires that the Heat current 3-form is not zero:
QˆdQ 6= 0. Smooth C2 processes can be irreversible, QˆdQ 6= 0, while segmented
C1 approximations to C2 smooth processes can be reversible.
4. Adiabatic processes are transverse to the Heat 1-form, (i(ρV4)Q) = 0.

Adiabatic processes need not be quasi-static, and can be reversible or irreversible.
5. A fundamental difference between Work and Heat is that Work always

is transversal to the processes, such that i(ρV4)W = 0; but it is not true that
i(ρV4)Q = 0, unless the process is adiabatic.
6. For non-equilibrium systems, the 3-form of Topological Torsion (an N-

1=3-form current) is not zero: AˆdA = i(T4)dxˆdyˆdzˆdt 6= 0. The Topological
Torsion vector, T4, is deduced intrinsically from the 1-form that encodes the ther-
modynamic system. It can be used as a direction field for an irreversible process
current, ρT, if the divergence of the process current is not zero.
7. For PTD=3 "closed" thermodynamic systems, the process current ρV4

has zero divergence, and the 4D volume element is a conformal invariant (any ρ).
This result is the space-time extension of the Liouville theorem that preserves the
phase-space volume element in classical theory
8. For a PTD=4 "open" thermodynamic systems, the Topological Torsion

Current is not conserved. This result is the extension of the Vlasov equation; the
4D differential volume element is expanding or contracting. Such processes in the
direction of T4 are irreversible and dissipative.
9. In electromagnetic systems, the dissipation coefficient is proportional to

E ◦B; in hydrodynamics, the dissipation coefficient is called "Bulk viscosity" and
equals (a◦curl v).
10. Examples of thermodynamic systems can be given to demonstrate that the

conjectured format of the London Current of superconductivity, where J = χA,
can be deduced as a consequence of the Topological Theory of Thermodynamics.
11. For the Spin Current 3-form, examples can demonstrate that, formally, the

Spin current is proportional to the Lorentz force (the space-time components of the
Work 1-form, W ). This is a new interpretation of an old result, J = σ(E+VxB),
which is Ohm’s law. The new part is due to the idea that the dissipation is due to
Spin Currents and the transport of collective spins, AˆG.
12. The Kolmogorov-Cartan T0 topological structure for equilibrium domains

of PTD ≤ 2 creates a connected, but not necessarily simply connected, topology.
Evolutionary predictive solution uniqueness is possible, as the Frobenius theorem
is satisfied, and the problem can be reduced to two independent functions (a two
body problem).
13. The Kolmogorov-Cartan T0 topological structure for non-equilibrium do-

mains of PTD ≥ 2 creates a disconnected topology of multiple components. If
solutions to a particular evolutionary problem exist, then the solutions are not
unique. Envelope solutions, such as Huygen wavelets and propagating tangential
discontinuities (called signals, or wakes) are classic examples.
14. All Hamiltonian, Symplectic-Bernoulli and Helmholtz processes are thermo-

dynamically reversible. In particular, the work 1-form, W , created by Hamiltonian
processes is of Pfaff Topological Dimension 1 or less. In all reversible cases the
Work 1-form is closed, dW = 0.
15. In the PTD=4 case, there exist density distributions, ρ, such that the

divergence of the process current is zero. There exist an infinite number of such
integrating factors, that define "stationary states" far from equilibrium. It can
be demonstrated in terms of continuous topological evolution that a density dis-
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tribution which defines a "stationary" state can emerge as a topological defect,or
soliton, in a PTD=4 system, by dissipative processes. Such a result gives formal
credence to Prigogine’s conjectures.

16. The assumption of uniqueness of evolutionary solutions (which implies the
Pfaff Topological Dimension of the thermodynamic system be equal to 2 or less), or
the assumption of homeomorphic evolution, have imposed constraints upon classical
mechanics that eliminate any time asymmetry.
17. The Lie differential can encode both non-adiabatic or adiabatic processes.

The ubiquitous affine covariant differential of tensor analysis can always be cast
into a form representing an adiabatic process.
18. On spaces of PTD=4, the Jacobian of the components of the 1-form of

Action, A, define a correlation matrix, which has a four order characteristic poly-
nomial that defines an equation of state in terms of Cayley-Hamilton similarity
invariants. The Cayley-Hamilton theorem produces an implicit hypersurface func-
tion that can have envelopes and edges of regression in the format of the Gibbs
function for a (universal and deformable) van der Waals gas. The method yields
analytic expressions for the critical point, and the binodal and spinodal lines, in
terms of the similarity invariants. The same technique can be applied to dynamical
systems.

19. Cartan’s Magic formula, in terms of the Lie differential acting on ex-
terior differential 1-forms, establishes the long sought for combination of dynam-
ics and thermodynamics, enabling non-equilibrium systems, and many irreversible
processes, to be computed in terms of continuous topological evolution, without
resort to probability theory and statistics.
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20. Topological fluctuations can be induced by processes that have compo-
nents in terms of thermodynamic macroscopic Spinors. Thermodynamic Macro-
scopic Spinors are non-zero complex eigenvectors with complex eigenvalues (and
zero quadratic form) of the antisymmetric 2-form (or matrix) representing the
"Limit Points", dA, of the 1-form of Action, A. Such Macroscopic Spinors are
capable of representing minimal surface conjugate pairs.
21. A conjecture of a turbulent non-equilibrium thermodynamic cosmology can

be constructed in terms of a dilute van der Waals gas near its critical point. The
conjecture yields an explanation for:
a. The granularity of the night sky as exhibited by stars and galaxies due to

density fluctuation near the critical point, and the Newtonian law of gravitational
attraction proportional to 1/r2 as a correlation between fluctuations (Lev Landau).
b. The conformal expansion of the universe as an irreversible phenomenon-

associated with Quartic similarity invariants in the thermodynamic phase function,
and conformally related to dissipative effects.
c. The possibility of domains of negative pressure (explaining what has recently

been called "dark energy") are due to a classical "Higgs" mechanism for aggregates
below the critical temperature
d. The possibility of domains of negative temperature (explaining what has

recently been called "dark matter") due to macroscopic collective states of ordered
spins. The conjecture is that Positive temperature radiates, Negative temperature
does not. The conjecture is that black holes could be negative temperature states
of collective spins.
e. The possibility of domains where gravitational effects (quadratic similarity

invariants, or 2nd order Gauss curvature effects) appear to be related to entropy and
temperature properties of the thermodynamic system, and where cubic curvature
effects could impede gravitational collapse.
f. Black Holes (generated by Petrov Type D solutions in gravitational theory)

are to be related to Minimal Surface solutions to the Universal thermodynamic 4th
order Phase function.
22. The Kolmogorov T0 topology of thermodynamics is based upon a special-

ization partial order of closure. Every Open set is an upper (Up) set ↑ and every
closed set is a lower (Down) set ↓. The T0 topological structure for thermody-
namics is deduced from any 1-form on a specialization order of differential varieties.
The T0 topology admits a dual topology, T*0. The closure condition is inherent
in the concept of Continuous Topological Evolution of T0 and T*0 topologies and
CONTINUOUS FIELDS. Both Kolmogorov topologies are partitions of a DIS-
CRETE Alexandroff T1 topology. The T1 topology is inherent in the concept of
DISCRETE PARTICLES. Hence, there is an intimately relationship among the
three topological structures, but in thermodynamics there are three important 1-
forms, A, W, and Q. Hence there is a plethora of triple relationships between T1,
T0 and T*0 for each 1-form. Is this the Universal Effectiveness of Topological
Thermodynamics acting as the foundation for Quarks?

http://www22.pair.com/csdc/download/dean.pdf
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COSMO-RS [1,2] is a novel method for the a priori prediction of chemical potentials, activity coefficients and 
vapor pressures of almost arbitrary chemical compounds in pure liquid solvents and mixtures. In contrast to the 
widely used group contribution methods COSMO-RS gets the information about the intermolecular interactions 
from uni-molecular quantum chemical calculations on the compounds and thus it is far less dependent on 
experimental data. Hence COSMO-RS is an efficient alternative to group contribution methods on the one hand 
and to the Monte-Carlo and Molecular Dynamics simulations on the other side. Aside from a few disadvantages 
it has a lot of systematic advantages. The greatest strengths are the broad applicability and extrapolation power 
of the method, and the systematic physical insight into the mixture behavior of the systems, which COSMO-RS 
opens by its sound physical basis. Thus complicated or rare compounds can be treated and differences between 
isomers can be resolved. 
 
Beyond the basic features regarding activity coefficients, vapor pressures, and enthalpies of fluid systems, 
COSMO-RS can be applied to solid-liquid equilibria, to solubility in polymers, to ionic liquids and electrolytes, 
to pKa-prediction, to adsorption phenomena and physiological partitioning, reaction thermodynamics, micelle 
and biomembrane binding, chromatographic retention times, crystal face polarities, and many other problems of 
physical chemistry which have to do with liquid phase equilibria. Due to its broad predictive capabilities it has 
become a widely used method in chemical engineering thermodynamics. 
 
The lecture will give an introduction to the COSMO-RS theory and an overview of its application area. 
 
 
 
[1] A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative 
Calculation of Solvation Phenomena,  J. Phys. Chem., 99, 2224-2235 (1995) 
[2] A. Klamt, From Quantum Chemistry to Fluid Phase Equilibria and Drug Design, Elsevier, 2005 
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The purpose of the present work is the investigation of the Soret effect in dilute polymer solutions,
especially the crossover from small molecule to high polymer behaviour. Whereas monomers
and short oligomers behave as ‘erratic and unpredictable’ as other small molecules, the thermal
diffusion coefficient of many high polymers behaves surprisingly simple: it is independent of the
chain length and, apparently, depends only on the solvent viscosity. The crossover from monomer-
to polymer-type behavior occurs at a certain chain length that defines an effective segment, which
we have been able to identify in our experiments.

A temperature gradient induces a diffusive mass current ~jT = −ρDT c(1 − c)∇T in a binary fluid
mixture due to the Soret effect. ρ is the density of the mixture, c the mass fraction of component
one and DT the so-called thermal diffusion coefficient. ~jT leads to the build-up of a concentration
gradient and an accompanying Fickian mass diffusion current ~jD = −ρD∇c. D is the mutual
mass diffusion coefficient. Eventually a stationary concentration gradient

∇c = −ST c(1 − c)∇T

is reached, where the total current vanishes (~jT +~jD = 0). Typical Soret coefficients ST = DT /D
of ordinary liquid mixtures far away from a phase transition are of the order of 10−3 K−1, but
values up to 100K−1 are reached close to a critical point.
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Figure 1: ηDT as function of molar mass for PS in
different solvents at T = 295K [1, 2].

The isothermal diffusion coefficient in dilute
polymer solutions shows a well-known scal-
ing law D ∝ N−ν with the Flory-exponent
ν ≈ 0.6 in case of good solvents. The ther-
mal diffusion coefficient DT and, hence, the
thermophoretic drift velocity ~vT = −DT∇T
are independent of the degree of polymeriza-
tion N of the polymer. Nevertheless, DT

is not a monomer property. The different
molar mass dependencies of these two diffu-
sion coefficients can be rationalized in terms
of different hydrodynamic flow fields around
the segments. Isothermal diffusion is de-
scribed by a stick boundary condition and
long-ranged flow fields with hydrodynamic
coupling between the segments of the poly-
mer chain. Thermal diffusion belongs to the
problem class of phoretic motion with slip
boundary condition between the surface of a
segment and the solvent. The corresponding flow field is short ranged without hydrodynamic
coupling of the segments [3, 4].

We have studied the crossover from small-molecule to polymer behavior in the Soret effect of dilute
solutions of polystyrene in seven different solvents. The molar masses range from the monomer
to M ≈ 106 g/mol. The thermal diffusion coefficient DT is molar mass independent in the high
polymer regime and the quantity ηDT is approximately constant and, surprisingly, independent
of the solvent (Fig. 1) [1, 5].

1presenting author
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a b c

d

Figure 2: Increasing size of the effective (co-
operative) unit with increasing degree of poly-
merization, starting from the monomer (a)
over short oligomers (b) until the effective seg-

ment (c) is reached. Longer chains are com-
posed of such effective segments (d) that act
independently.

For shorter chains below M ≈ 10 kg/mol, DT de-
creases monotonously with M and ηDT does no
longer follow a common master curve. For the
two ‘monomers’ ethylbenzene and 3,3’-dimethyl-
butylbenzene there is even a sign change in several
solvents, corresponding to a reversal of the direc-
tion of the thermophoretic motion. We conclude
that the thermal diffusion coefficient, albeit be-
ing molar mass independent in the high polymer
limit, is not a property of the monomer but rather
of correlated segments of the order of the Kuhn
segment (Fig. 2).

In order to test the influence of the size of the ef-

fective segment, we have investigated seven differ-
ent polymers (PE, PI, PDMS, PMMA, PS, pαMS,
tBMA) in various solvents (Fig. 3). As a measure
for the extent of correlation along the chain we
have resorted to the concept of the Kuhn statistical segment, whose molar mass is approximately
C∞Mm, with Mm being the monomer molar mass and C∞ the so-called characteristic ratio. The
results of these experiments show that DT always increases and then becomes molar mass indepen-
dent for long chains. Polymer-typical behavior with a solvent-independent plateau value of ηDT is
only reached for sufficiently stiff polymers with high values of C∞Mm, where the size and/or mass
of the effective segment significantly exceeds the corresponding quantity of the solvent molecules.
Highly flexible polymers, such as poly(ethylene), with short and light effective segments do not
reach a solvent-independent plateau value of ηDT .
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Figure 3: Plateau value (M → ∞) of ηDT

for different polymer/solvent combinations as
function of the molar mass of the Kuhn seg-
ment. T = 295K.

Besides the thermal diffusion coefficient DT we
will also address the properties of the Soret co-
efficient ST . We will show that hydrodynamic
interactions dominate the behavior of ST for suf-
ficiently long chains, where swelling due to ex-
cluded volume interactions becomes important.
For a given molar mass the Soret coefficient de-
pends only on the effective hydrodynamic radius
of the polymer coil and, hence, on the solvent
quality.
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Association theories e.g. those belonging to the SAFT family and lattice theories have 
been extensively applied to a variety of mixtures and types of phase equilibria over the 
last 10-15 years. Examples of applications include mixtures containing hydrogen bonding 
compounds, polymers and pharmaceuticals. 
 
In this presentation we will focus on three such theories, all equations of state, two 
belonging to the SAFT family (CPA and PC-SAFT) and one belonging to the lattice-fluid 
type models (NRHB). The models will be discussed from the application point of view 
emphasizing developments over the last two years.  
 
Capabilities and limitations will be presented as well as comparison of the various 
approaches.  
In particular, the following topics will be highlighted:  
* the role of polarity and hydrogen bonding, with special emphasis on solvating 
phenomena (see figure 1) 
* group contribution and other methods for parameter estimation 
* the role of monomer fraction data 
* applications to pharmaceuticals (see figure 2) 
 
 
 



 
Figure 1. Correlation with CPA of the water (4C) mole fraction in CO2 at three different 
temperatures. The binary interaction parameters are k12=0.06 and =0.075. The minimum in 
the water solubility is reproduced only when solvation is explicitly accounted for. Experimental 
data from Gillespie and Wilson, GPA research report RR-48, 1982. 
 

 
Figure 2. Solubility of naproxen in various solvents. Experimental data (points), NRHB 
predictions (dashed lines) and NRHB correlations (solid lines). 
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Introduction. Thermodynamic entropy can be treated as a measure of spontaneous spreading of the 

available energy (e.g., temporally, among the accessible microstates, in a different one each instant, resulting in an 

averaged distribution) (1,2). Clausius’ fundamental equation entails the essence of this interpretation: 

dS= đqrev/T          (1), 

in combination with the Boltzmann-Planck equation: 

 S(E)=klnW          (2), 

in which W is the number of equiprobable microstates (energy distribution modes) accessible by the system via 

random motion consequent to energy exchange events.   

The problem is that, while using eq 2, entropy change may be perceived to be due solely to an explicit 

increase in accessible particles’ positions in space, a way that W may be interpreted in eq 2 at the classical limit. 

This challenge is significant in teaching physical chemistry, given its ‘molecular flavor.’ The implication that there 

are two distinct varieties of entropy [“configurational” (i.e., spatial but temperature-independent) and “thermal” (i.e., 

space-independent)] is detrimental for instruction.  

To teach undergraduate students that there is only ONE entropy inherently coupling “thermal” and 

“configurational” aspects, my approach (non-Calculus-based, which is important for teaching chemists) connects 

classical and quantum mechanics via the use of the “spinless” Boltzmann distribution:  

N
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∑ −
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i

I

I

eg
eg

/

/

ε

ε
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q

eg kT
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I /ε−

      (3a) 

Nj/Ni= (gj/gi)e-Δε/kT          (3b) 

where Ni, εi, and gi are the population, energy, and degeneracy of a certain i-th energy level, respectively, j refers to 

a different energy level than i-th, separated from it by the energy gap, Δε), N = ΣNi is the total number of particles in 

the system, and q = kT
i

Ieg /ε−  is the molecular partition function. 

Approach. The most probable, i.e., spontaneously achieved, Boltzmann distribution assumes the maximum 

number of microstates for a closed system (N=const and sufficiently large) under the constraint of constant energy 

(i.e., the micro-canonical ensemble); normalizing the energies by temperature (thus, assuming thermal equilibrium) 

links it to the statistical canonical ensemble. It limits the number of possible microstates to those accessible at a 

given temperature for a given energy gap. The exponential factors in the Boltzmann distribution account for the 
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unequal probability of the lower-energy and higher-energy states, thus serving as “statistical weights”; the other 

statistical weight is the degeneracy factor for a particular state, gi. Without the use of temperature-dependent 

Boltzmann exponential factors, some values of “entropy” may be calculated using eq 2; however, they would not 

necessarily be thermodynamically relevant because some of the microstates would not be attainable (3,4). 

The microstates become equally accessible and, thus, equiprobable if the measure of an increment of 

energy, kT, overcomes the energy gaps between any two of given energy levels (3,4); or “dimensionless” energy 

gaps (∆ε/kT) are infinitesimal for all accessible m energy levels:  

∆ε/kT=(εm−ε1)/kT≈0         (4)  

The physical interpretation of this equation is that overcoming of ∆ε by the heat bath, kT, results in the 

equipopulation of energy levels (i.e., equiprobability of all microstates), which can be illustrated as follows. For N 

particles distributed among m’ states at a given temperature (m’, unlike m, includes degeneracy), the number of 

available microstates in the system can be calculated: 

W(T)=N!/N1!N2!…Nm’!          (5) 

For any Ni=N/m’ (i.e., equipopulation at “infinitely high” T), eqs 2 and 5 may be combined. Upon the 

application of Stirling’s approximation, the entropy change reflecting the system’s transfer from T=0 to this 

“infinitely high” temperature can be found:   

∆S=kln[W(“infinitely high” T)/W0]=kln{(N!/[(N/m’)!]m’/1}=kNlnm’     (6), 

where W0=1 is the single microstate when all of the particles are on the ground energy level. 

On the other hand, by a rearrangement of kNlnm’, the following equation can be obtained: 

∆S(“infinitely high”T)=kNlnm’=kln[(m’)N]        (7) 

This equation shows the inherent coupling of the “thermal” approach to configurational permutations (of 

finite sets of objects) because (m’)N in eq 7 can be visualized as the number of possible combinations while tossing a 

hypothetical die – with m’ equal sides – N times. Figuratively speaking, each molecule ‘rolls a die’ to ‘decide’ 

which state it will go to upon an energy exchange (3c).  

Eq 4, with its assumption of infinitely high temperature, sets up a rather rigorous requirement which seems 

to be unattainable. However, this problem may be addressed by considering the molecular partition function, the 

denominator in the Boltzmann distribution formula, which reflects the effective number of equipartitioned 

states/energy levels. Considering the system as N identical average particles provides a “bridge” between the micro-

canonical and canonical ensembles by calculating the entire system’s partition function, which reflects the statistical 

number of equiprobable microstates in the system at a given temperature (3c): 

Q(T)=W(T)=[q(T)]N         (8) 

Thus, q(T) (calculated as a product of partition functions for the available modes of motion) can be viewed 

as the effective number of attainable configurations at a given temperature (as m’ in eqs 6-7). The suggested 

approach, connecting “thermal” and “configurational” entropy, can be applied to 1) molar entropy values, 2) 

residual entropy, 3) mixing, 4) the gas phase, and 5) the Gibbs paradox.  

Applications.  
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Molar entropy values. In a naïve molecular application of configurational entropy to distinguishable 

particles, assuming that each particle is unique and distinguishable by its interactions with other unique surrounding 

particles, i.e., configurations, the number of equiprobable microstates may be calculated as  

W=N!           (9)    

At first glance, this formula, applicable also to a deck of N cards each of them having a different face value, 

allows for the estimate of molar configurational entropy of condensed phases for point-size particles which are all 

distinguishable (NA is the Avogadro’s number):  

∆S(configurational)=kln(NA!)≈kNA[ln(NA)-1]=Rln(NA/e)≈447 J/molK      (10) 

However, eq 10 is not applicable to real systems: Standard molar entropies of common inorganic solids or 

liquids are much smaller, whereas the S0 values for hydrocarbons >C12 exceed this perceived “limit” (3c) Thus, 

configurational entropy cannot be decoupled from q(T), the number of attainable configurations per molecule at a 

given temperature. This consideration sets the rigorous limit to the use of a 52-card deck to illustrate entropy change. 

Being temperature-independent, this inadequate model does not obey the Third Law and definition of the micro-

canonical ensemble. The root of the problem is that the “particles” within a card deck (having ∆ε=0) are unlike the 

molecular systems [where ∆ε≈0 is a useful approximation only above the characteristic temperature, Θ=∆ε/k (i.e., 

∆ε<<kT)]. Thus, in reversible thermodynamic applications, not every lnW may be allowed to be multiplied by k in 

eq 2 to yield a valid thermodynamic value; W must be temperature-dependent and be consistent with eq 8.  

Residual entropy. Residual entropy can also be explained while connecting the “thermal” and 

“configurational” considerations (3b,4). As an example, HCl dipoles are known to be present in virtually 100% 

“head-to-tail” configuration near its freezing point (of a lower energy than the opposite “head-to-head” 

configuration due to the favorable dipole-dipole interactions), so it freezes as a “perfect” crystal. This means that, at 

this temperature, q(T) ≈1 for intermolecular vibrations, i.e., the system is below the characteristic temperature 

(∆ε>>kT) for this type of motion. If either temperature increases or the energy gap (∆ε) between the “head-to-tail” 

and “head-to-head” configurations decreases (e.g., as is true of CO, in contrast to HCl, near its freezing point), the 

choice of configuration is nearly random, so q(T)≈2 [in a general case, q(T)≈m’ where m’ reflects the number of 

possible intermolecular configurations, at least two of them being different in energy of intermolecular interactions]. 

Upon freezing followed by reversible cooling, the CO dipoles would realign to form a fully ordered crystal at T 

below the characteristic temperature. However, such realignment does not occur due to insurmountable kinetic 

barriers (molecules cannot rotate within crystals). This yields residual entropy at T=0 equal to  

∆Sresidual=Rlnm’          (11) 

Even though systems with residual entropy are not at equilibrium, the existence of a hypothetical reversible path 

allows for the application of reversible thermodynamics, i.e., eq 7 (4).  

Entropy of mixing. Configurational entropy of mixing of two liquids’ equimolar amounts yields  

∆Smixing=-2R×½ln½=Rln2         (12) 

However, since neither energy nor temperature are involved in this derivation, it is not obvious that 

“thermal” entropy is applicable to the process of mixing; particularly, for ideal solutions, when ∆Hmixing≈0. 

However, the assumption of ideal solution is tantamount to satisfying eq 4. When m=2=qmixing, meaning that the 
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liquids are fully miscible, the locations within the former two liquids (i.e., before mixing, with one liquid on top of 

the other) become totally equiprobable for each particle regardless of its origin. Figuratively speaking, the 

multifaceted die to be rolled (eq 7) becomes a two-sided coin which each molecule ‘tosses’ to ‘decide’ whether it 

will stay in the original region or move to the other one. The fundamental problem, so far as thermodynamic entropy 

is concerned, is that viewing W=(m’)N (eqs 7-8) as a purely statistical statement means that all of these substates can 

be degenerate with no energy difference (∆ε=0, as in macro objects like a perfect die or coin). As has been shown 

here, this condition may be valid in mathematics, but it does not rationalize an observable physical change in macro 

thermodynamics as does the micro-thermodynamic view of mobile molecules constantly moving between different 

energy arrangements and randomly exploring available space as well. Freezing a mixture as the ideal solution (i.e., 

above the characteristic temperature) yields residual entropy (4). 

Gases (‘indistinguishable’ particles). The suggested treatment is also applicable to gases (i.e., 

indistinguishable particles), as long as attaining a non-fluctuating constant temperature (i.e., thermal equilibrium) is 

considered as evidence of particles’ interaction. Then, the Maxwell-Boltzmann distribution is fully applicable and 

expansion may be viewed as degeneracy. Spreading of energy in the gas phase is tantamount to the spreading of 

matter because particles are the ultimate energy carriers and because the translational energy gaps are inherently 

small, thus assuring the applicability of eqs 4-8. 

The Gibbs’ paradox. The suggested treatment helps explain the Gibbs’ paradox, which is based on the 

assumption that, from a configurational viewpoint, mixing two identical volumes of the same liquid would generate 

∆S=kNln2. However, there is no paradox from the “thermal” view because, since ∆ε=0 between the two totally 

identical subsets, m pertaining to mixing remains equal to 1; thus, W2=W1 and ∆S=0. Once there is a difference 

between the subsets, however small it is (e.g., two different isotopes above their characteristic temperature of 

mixing), ∆S=kNln2 is exhibited (3c). Entropy is not a function of ∆ε (energy) but only ∆ε >0 (uneven energy 

distribution) enables its change as a measure of energy spreading. 

References. 

1. Leff, H.S. Am. J. Phys., 1996, 64, 1261-1271; Found. Phys. 2007, 37, 1744-1766. 

2. Lambert, F.L. J. Chem. Educ., 2002, 79, 187-192, 1241-1246, and 2007, 84, 1548-1550. 

3. Kozliak, E.I. J. Chem. Educ., 2004, 81, 1595-1598, 2007, 84, 493-498, and 2009, accepted for publication. 

4. Kozliak, E.; Lambert, F.L. Entropy, 2008, 10, 274-284. 



Silver Plate, A mnemonic for Max Born’s Mnemonic Square 
 

J. Lewins 

Magdalene College, U Cambridge 

jl22@cam.ac.uk 

 

 

 

Max Born provided a mnemonic square to assist in the application of 

Maxwell’s relations in thermodynamic analysis. But if, for examination purposes, the 

instructor does no provide the Born square, how might the student remember? 

 

SilVer 

-PlaTe 

 

S V 

P T 

 

I offer the mnemonic ‘SilVer-Plate’ to arrive at the basic diagram 

 The relevant partial differentials are rtead left and right and together with the 

hyphen to remind the user to insert a minus sign, we arrive at the Maxwell relation 

derived from the Gibbs function G({,T )  in the form 

 
S

P T

V

T P

 

Note that the diagonals of the square have the dimensions of energy, an aid to 

memory. To obtain the remaining three relations there are two equivalent procedures. 

First, rotate the square in either direction 90 0  at a time, changing the sign  each 

time. Secondly, exchange the diagonal terms, with the same procedure for sign 

change. 
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Endo-reversible theory in which thermal engines are described as an internally 

reversible engine sandwiched between real irreversible heat transfer units, connecting 

to hot and cold reservoirs, has been with us for some fifty yeas. It is a theory that 

offers easy manipulation in analysis, but it has received considerable criticism from 

thermodynamicists, at MIT for example. How can such a simple, naïve theory be 

acceptable science? 

 I think the theory must be assessed in terms of what it claims. Typically it is 

used to maximise the useful power production from a thermal power plant leading to 

a specification of the internal temperature ratio driving the reversible engine in terms 

of the external ratio of the thermal reservoirs. The resulting thermal efficiency, at 

maximum power, is then lower than the overall Carnot efficiency. Bejan shows some 

ten power plants correlated by this theory and I have added data from four binary 

cycle plants over an 80-year period. The correlation by endo-reversible theory seems 

good, as good as any ‘back of the envelope’ might be. 

 So is the theory good science? If used to design an optimised plant, it gives 

little benefit. But if used to predict the result of optimising such a plant it must be 

considered good science and the simplicity, according to Occam’s razor, makes it 

even better.  Misused, any theory is surely bad science.  

 

 

Bejan A, Advanced Engineering Thermodynamics, Wiley, New York, 1988 (third ed 

2006). 

Curzon F L and Ahlborn B, Efficiency of a Carnot engine at maximum power Am J 

Phys 43 22-24, 1975. 
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 Modern thermoelectricity is best approached through the formalism of 

irreversible thermodynamics, leading to Kelvin’s relations and much more. But it 

would be well for the instructor to anticipate three conceptual problems the class 

might raise: our two ‘health warnings’. 

 We suppose that the electric current density or flux is given at any point by 

i V T  where the electrical conductivity 1 / , the resistivity.  is 

the (absolute) Seebeck coefficient of the material giving rise to the further emf in 

steady state adding to the voltage gradient V . The Peltier coefficient  then 

describes the hidden heat carried by the electric current to be added to the Fourier or 

patent heat to form the heat flux vector q T i  with entropy flux j q /T . 

When the compound flux vector J (i, j)  is expressed as a matrix equation in terms 

of a compound forces vector X ( V, T )  we have J LX  and a careful 

evaluation of the divergence of entropy involving i i  shows that the 

dissipated power density is given by X LX . In so doing we find the (absolute) 

intrinsic Thomson coefficient for material , d / dT . Integrating along the 

electric flux through a discontinuity we have the conventional Peltier coefficient 

.As a linear system the power dissipative density will be positive 

definite, satisfying the Second Law, if the determinant  L
T

0  (surely it is) and 

the matrix is symmetric, or the Kelvin relation /T . So far, so good. 

 Now for the ‘health and safety’: 

 It is NOT to be assumed that a combined material can be predicted as a linear 

combination of x (1 x)  in proportion x . ‘Impurities” have vastly non-linear 

effects. 

 We assumed a resistivity (T )  defined for zero temperature gradient and 

conductivity (T )  defined for no electric current.  We can reasonably expect these 

values to be perturbed by the conjugate forces (phonon-drag for example). The 

determinant may remain positive but we can no longer rely on Sylvester’s condition 

of symmetry. Frankly I do not think Kelvin’s relations exact at high gradients where 

we enter the world of non-linear phenomenological equations. Solution: give it to the 

enquiring student as a PhD project. 

 Students might reasonably interpret the Thomson coefficient as a heat capacity 

per coulomb and thus expect it to be negative. However, values for lithium and the 

group 11 metals are positive. The risk is a two-hour discussion of Fermi surfaces and 

reciprocal lattice zones. To avoid the issue, point out that this is a transport 

phenomenon, quoting the lattice of zinc and cadmium with coefficients that differs 

with the direction of transport, along or perpendicular to the hexagonal lattice. Offer a 

six-hour course in transport theory for anyone interested. I would like to come. 
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It is easy to optimise a Peltier refrigerator if we make the naïve assumption that the 

thermal conductivity   and the electrical resistivity   and also the Seebeck 

coefficient   are independent of temperature. In an adiathermal sheath model of 

cross-section A  and length   with heat transfer only at the junctions, we may 

normalise the current flow to the heat conduction due to Fourier flow from the hot to 

cold junction, as I
*  I1l / A[T0  T1] to find I *  2  for the lowest achievable cold 

junction at T1min  and I *  2 / (1Q*)  where Q*  is a similarly normalised optimum 

refrigerative power at higher temperatures T1 T1min .  The geometric optimisation is 

then a matter of a squat design, to maximise the Fourier heat of the electrically 

optimised system. 

 If the coefficients vary with temperature we are presented with the far more 

challenging problem of a second-order non-linear equation to optimise, where only 

one boundary value is known, the ambient T0 . 

 We show that in two cases the problem can be reduced to first order allowing 

a straightforward numerical integration: 

 The conductivities are temperature dependent but the Seebeck coefficient 

constant; 

 The Seebeck coefficient varies but the conductivities are constant. 

Numerical studies show that our non-dimensional form is affected by only about 10% 

by these variations and so it seems reasonable to apply both corrections in the general 

case before evaluating the dimensional results. 



Exact calculations of Auto-ignition Delay Times 
 

J Lewins and J Heffer 

Engineering Dept U Cambridge 

jl22@cam.ac.uk 

 

 

 

 Standard application of Arrhenius rate theory to the calculation of delay times 

for auto-ignition in spark engines (or refrigeration technology) calls typically for the 

solution of a non-dimensional equation of the form d / d  exp(1/)  for a non-

dimensional delay time   and a non-dimensional temperature   1  at the activation 

temperature, conveniently taken as the onset of combustion and hence the end of 

delay. This equation and others like it are conventionally expanded to second order to 

provide a parabolic approximate solution.  

 We have summed an exact series solution to this and other such equations 

over two decades of delay times, showing that the conventional approximation rapidly 

becomes an under-estimate. This is unfortunate since a typical activation temperature 

might be 20 kK  but a more reasonable end temperature might be 1 kK  and a starting 

temperature 300 K , calling for nearly two decades cover. We show that expansion 

about a temperature below the activation temperature is flawed and thus recommend 

our exact series solution. 
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1. Introduction

One of the most important laws of Nature, the Second Law, is formulated as requiring the increase of entropy in 
isolated systems. We attempt here to reformulate the Second Law of thermodynamics with the help of extropy, a 
thermodynamic state variable that measures the degree of nonequilibrium in entropic dimensions [J/K].

 Nature does not distinguish adiabatic processes and therefore attributing a special role to them introduces a kind 
of arbitrariness into the foundations of thermodynamics. Here thermodynamics is constructed by dispensing with 
the adiabatic and quasistatic assumptions. Historically Clausius found that in a reversible adiabatic cycle
 

∫dQ/T   = 0 1.

 Clausius considered only the special solution of (1) corresponding to

dS =dQ/T 2.

Poór [1] showed that equation (2) is not the only solution of equation (1), but the general solution has the form

S* = A dQ/T + df, 3.

here f is also a function of state variables. The unique entropy (corresponding to the case df = 0) is a conse-
quence only of the fact that Clausius did not look for the general solution. Our choice will be A=-1, df=1/T0 dU 
+ p0 /T0 dV+µ0 /T0 dN, where T0 is the temperature of the environment, and p0 is the pressure of the environment, 
while µ0 refers to the chemical potential of the environment (for the sake of brevity, we omitted here the 
summation for components.) That form of df leads to a new thermodynamic potential, called extropy [2-4], 
measuring the distance from the equilibrium. Extropy is zero in equilibrium, and later we will see that it is 
always positive, and it is decreasing during the equilibration processes. 

2. Extropy

In this approach we do not use the classical one, as we eliminate a superfluous step at the very first and most 
decisive stages in the construction of thermodynamic theory. The general belief is that equilibrium is simple, and 
we can understand the world only through understanding equilibrium. In contrast to this idealized approach, we 
start from the basic fact that everything is changing, and in the actual world everything is in non-equilibrium. 
Thermodynamic processes occur in nature only when nonequilibrium is present, i.e., when the distance from 
equilibrium is not zero. It is the deviation of the thermodynamic intensive variables that generate the 
thermodynamic changes.  We start from the space of real, nonequilibrium states.  In any given environment 
Nature yields the sequence of states through which the equilibrium is approached. Nature is such that any system 
will always approach the equilibrium if the system is isolated or if it is in an equilibrium environment. This 
means that a distance from the equilibrium exists which will decrease in the fixed environment. It is the task of 
thermodynamics to determine mathematically this distance from the equilibrium with the help of measurable 
quantities. Equilibration is a natural law based on the presence of nonequilibrium, and the equilibrium is the 
result of equilibration.

To exploit this property in this chapter we consider only systems embedded into an equilibrium environment. 
Later, it can be extended to incorporate the isolated systems too. The equilibrium environment is characterized 
by its temperature T0, pressure p0, and the chemical potential of its constituents µ0i, where index i refers to the i-th 
chemical component. In the following, for the sake of brevity we omit the index i, if it is convenient.



In the fixed environment the temperature and pressure scale can be fixed to the environmental values, and then 
these new values characterize the state of the system as deviations from the characteristics of the environment. 
We use the following natural temperature scale:

τ = 1/T0  - 1/T

We call it natural temperature scale, as it refers to the pre-thermodynamic notion of hot and cold. In our 
environment the average environmental temperature is 17 Celsius, so τ is positive for t>17 and negative for the 
opposite case. Similarly for the natural pressure scale,

pn = p0/T0  -  p/T.

As the energy change of the system is related to the temperature change the product of the internal energy 
change and the natural temperature must not be negative, so (U0-U) τ ≥0, if there is only temperature difference. 
Similar statement is valid for the other terms. On the basis of these simple considerations, we can turn to a 
heuristic measure like the product of extensive and intensive parameters. Such a simple product is more easily 
tractable than the absolute value function. Their sum (D) is zero in equilibrium. 

D= (U0-U)µ + (V0-V)(pn) + (N0-N)(µ n) + ......

This quantity is similar to the radial distance in geometry, it measures the distance from the origo (which is the 
equilibrium state in our case.) Nevertheless D is not necessarily a monotonous function of time. In order to check 
this, let us calculate the time variation. Executing the derivation, we obtain

d/dt D   =  τ dU/dt + pn dV/dt + µn dN/dt + 
+ (U d (1/T) /dt + V d/dt(p/T) + N d(µ/T)/dt)+ 
+ U0 d (1/T) /dt + V0 d/dt(p/T) + N0 d(τ/T)/dt 

The first line is always positive. The second one is zero. Nevertheless the third term can be of any sign, as there 
is no correlation between the equilibrium energy and the temperature change. The first line is just time derivative 
of extropy, defined as

Π =Uτ + V pn +N µn + ...

Extropy is zero in equilibrium, and in non-equilibrium it can only decrease (if the system does not get extropy 
from other systems), so it is zero or positive. It is the right measure of the distance from the equilibrium. In 
geometrical sense it is a direction dependent (irreversible) radial distance. The Second law can be formulated 
now in the following form: in a system embedded into equilibrium environment the extropy is decreasing until 
the equilibrium is reached. The intuitive notion of approaching the equilibrium is reflected by the decrease of 
extropy. For a non-equilibrium isolated system the extropy is the difference of the entropies of the system 
corresponding to equilibrium and that of the actual state of the isolated system. In isolated systems the extropy is 
the Brillouin negentropy. 

3. Extropic Thermodynamics

Extropy leads to a new classification of thermodynamic systems, namely extropic and endtropic systems. 
Endtropic systems are defined as the systems embedded into an equilibrium environment (or the isolated 
systems), they exchange material and energy only with their reservoir environment, and do not exchange 
material and energy with other systems, therefore, they approach the equilibrium, and their extropy is decreasing. 

Extropic systems exchange material and energy with other systems, and so they can get extropy, so their extropy 
may also increase.  Such a system will be classified as an extropy exchanging system or shortly - extropic 
system.  Isolated systems represent a subclass of the class of endtropic systems; therefore they do not form a 
separate class. Therefore, the two types of extropic classification of thermodynamic systems are the extropy-
exchanging and the equilibrating systems. The extropic classification types differ from the older classification 
types. Extropy-exchanging systems are open systems; but equilibrating systems also can be open systems, if they 
exchange matter with their environment. Closed systems can still exchange energy with their environment, and 
so they also can be regarded as extropy-exchanging systems. 



The fact that extropy as a driver of processes is based on differences presents an unexpected and fundamental 
challenge for us physicists accustomed to the preconceptions based on Newtonian physics. In modern
physics, it is generally regarded that the basic drivers of physical processes are forces. The four fundamental 
forces of physics, gravitation and electromagnetism, and the weak and strong nuclear forces are forces that 
correspond to the properties of the objects themselves. In contrast, our finding is that the basic driver of 
thermodynamic processes is not a physical factor corresponding to the properties of the objects themselves, but 
to the relations between the objects and their environments. Modern physics credits such concepts as 
corresponding to the Aristotelian view in which the factor driving natural processes depends on the relation 
between the objects and their environment. The force beyond thermodynamic changes is not of a Newtonian 
type, because it is based on differences and not on the material properties of the objects themselves. This 
thermodynamic force is originated from the fact that the system is not in thermodynamic equilibrium.

It seems that we have to change our basic preconceptions regarding the nature of the physical world and learn to 
be accustomed to a new scientific world picture based on the extropic aspects of thermodynamics.
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The paper develops thermomechanics of a vortex array as a certain field of a special geometry in a type-II 
superconductor. For applied field strength less than the lower critical field Hc1 the superconductor expels magnetic flux 
from the material (Meissner effect). For applied fields greater than the upper critical field strength Hc2 the 
superconductivity is destroyed altogether. But between the lower Hc1 and upper Hc2 magnetic field strengths the 
superconductor is in the mixed or vortex state. 
Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices (also called flux lines, flux 
tubes or fluxons) each carrying a quantum of magnetic flux. These tiny vortices of supercurrent tend to arrange 
themselves in a triangular or quadratic flux-line lattice. 

That array forms a honeycomb-like pattern in a cross-section perpendicular to the vortex parallel cores. The vortex 
lines interact with each other and with the supercurrent (the Lorentz force). If the superconductor is heterogeneous 
and/or defective one observes pinning of the vortices on imperfections. So, the vortex lattice can have elastic properties. 
However, if the density of the supercurrent is above its critical value and/or the temperature is sufficiently high, there 
occurs a flow of vortices in the superconducting body. In such a situation vortices behave rather as a fluid than as an 
elastic lattice. The paper deals with a magnetothermomechanical model of such defined votex field in the 
superconductor if a “lattice” and “liquid” states coexist within the superconducting phase (it is not exactly known if 
changing temperature and/or magnetic field a transition from “lattice” to “fluid” state is singular or continuous one).  

An unconventional thermodynamical model of those interactions has been presented for soft vortices (weak 
pinning). The model consists of a vector of state (set of independent variables), balances of mass, momentum, internal 
energy, evolution equations for fluxes and internal variables, electromagnetic field equations, entropy inequality, 
constitutive vector (set of dependent variables) and constitutive theory. A special form of the elastic stress tensor 
concerning both states of the vortex array has been proposed. An anomalous property of that field is observed: if 
temperature increases the stress always increases contrary to majority of materials in the normal state where both 
possibilities occur.  

Basing on the above presented unconventional model the magnetoelastic field equations describing dynamics of 
magnetomechanical interactions have been derived. To illustrate consequences resulting from that model the following 
applications have been investigated: magnetoelastic waves in a superconducting heterostructure consisted of a layer put 
on a halfspace and compressional and flexural magnetoelastic waves in a superconducting layer placed into an external 
magnetic field. It occurred that dynamics of the vortex field presents some anomalous properties. 
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Many traits and prejudices are brought down from generation to generation. The story of the 
development of the second law as we study it today arguably started with a publication by a young 
man, of a treaty where the behaviour of the recently appearing power-producing machines of his time 
was analyzed in a rational way. Thermodynamics, understood in its initial denotation as the study of 
machines that produce mechanical power from heat, was spawning and, as such, a theory would have 
to be built from scratch. It is thus not surprising that Sadi Carnot, a military engineer, son of Lazare 
Carnot, himself also an brilliant engineer with experience in the construction of waterwheels, was the 
forefather of current thermodynamics. However, Sadi Carnot did not start from a clean slate. 
Waterwheels were the engines of the time in the start of the 18th century, a reliable source of 
mechanical energy. Even today we have working examples of these machines, some modern versions 
powering the large hydroelectric plants in the world. The concept behind a waterwheel is fairly simple 
and was understood at the time by Lazare Carnot (Sadi’s father): a) the higher the source of the 
waterfall, the more work that could be obtained b) the smoother the operation (less impact of the water, 
less turbulence, water exiting with zero velocity, etc. ) the higher the output c) the larger the flow, the 
larger the amount of work. Essentially, in today’s language, Lazare Carnot was convinced that in the 
ideal waterwheel none of the energy would be lost (or dissipated), and the system could be made 
reversible if one were to actuate the waterwheel (inputting work) to raise water. It is thus not surprising 
that the son took on his father’s ideas and independently extrapolated them to the machines that made 
power from a different source of flow: heat flow. It is a remarkable stroke of luck that the simple 
concepts behind a water wheel could be applied to a heat engine almost directly. Few students 
recognize that the second law, as derived from Sadi Carnot’s comments was actually stated with the 
assumption that heat could be treated as water flowing from a height. An excerpt from Carnot’s only 
paper reads remarkably similar to what his father taught him: 
 

“According to established principles at the present time, we can compare with sufficient 
accuracy the motive power of heat to that of a waterfall. Each has a maximum that we cannot exceed… 
The motive power of a waterfall depends on its height and on the quantity of the liquid; the motive 
power of heat depends also on the quantity of [caloric] used, and on … the difference of temperatures 
of the bodies between which the exchange of [caloric] is made.” 1 
 
This paper builds on the analogy proposed almost two centuries ago by Sadi Carnot, and places it in 
modern terminology. Consider the case of a waterfall2: 
 
 
 
 
 
 
 
 
 
 

 
Let us take as our control volume the waterfall plus the upstream and downstream sections of 

the river (leaving the fisherman out of the problem for the time being). Since this is a steady state 
system, with no accumulation of either mass or energy, from the application of the first law one can 
derive3 
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If the river has a similar width and depth before and after the fall, the average velocity of the 
water will be similar, thus the change in kinetic energy between the upstream and downstream of the 
river will not be measurable4. Also, the water is a compressed fluid at these conditions; therefore its 
enthalpy will only be a function of the temperature, which will also be constant. If there is no work 
output, then the first law expression simplifies to  

 
 

 

!Q = ! !mg(zupstream ! zdownstream ) = ! !mg"z  (1) 
 

In other words, the change in potential energy is dissipated in the form of heat to the environment. It is 
interesting to note that nothing in these equations stops us from considering the inverse process, i.e. a 
jump in water by extracting heat from the surroundings. We see how it is our intuition that will suggest 
that water is displaced from top to bottom but it will not spontaneously travel upstream, surmounting 
the fall. The immediacy of the irreversible nature of the waterfall is apparent. However, when placing a 
waterwheel at the mouth of the waterfall, we manage to extract work from the process. Making the 
same simplifications and assumptions as in the case of the free fall, and dismissing the heat losses to 
the ambient, application of the first law reveals that   

 
 

 

!W = ! !mg(zupstream ! zdownstream ) = ! !mg"z  (2) 
 

Note that, of course this is same amount of energy that the wheel-less fall dissipated, which is 
now converted to work. The process is intuitively reversible, suggesting that the energy is being 
converted efficiently.  

 

 
An entropy balance on the river provides significant information 
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where the RHS is zero since a steady state is considered. The term 

 
!! generated  is the rate of entropy 

generation in the system. Using an incompressible fluid model (i.e. a constant heat capacity, C) the 
change in entropy between the upstream and downstream is seen to be null 
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since there is no change in the temperature of the water. Thus, the entropy generated by the process for 
the system without a waterwheel is,   
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where a is a positive quantity. Note that the natural behaviour (water falling down) implies a positive 
generation of entropy. In the awkward case where we consider the water to flow in “countercurrent”, or 



 

upstream, the entropy change will be negative and the process impossible both from the second law 
expression and from common sense. If we place a waterwheel, the heat is zero, (since now the change 
in potential energy is converted into work and no heat is dissipated to the surroundings; c.f. eq. 2) thus, 
the result from eqs. 3 and 4 is that the generation of entropy of the universe is null. The result tells us 
that the use of a water wheel makes the energy conversion process efficient (we obtain work!) and that 
the process is reversible. In particular it is the best scenario, the maximum work attainable.  
 

The analogy between this system and thermal systems, for which the students have less 
everyday experience is very useful. One can extract the following self-evident conclusions: 

 
1.  It is impossible to build a waterwheel that without consuming work raises water from a low 

height to a greater height. 
2.  It is impossible to build a waterwheel that converts all of the potential energy of the river 

water to work. (There will always be water at a lower level that would have energy equal to mgzB). 
3.  The maximum work is obtained by a reversible waterwheel (where no energy is lost by 

dissipation). 
4.  Regardless of the way we design the waterwheel, the maximum amount of work extractable 

depends exclusively on the difference in the height of the water streams.  
 
The clever lecturer will immediately recognize in these simple statements the analogue of the 

Clausius, Kelvin-Planck statements of the second law and the two principles of Carnot, respectively. 
This has an enormous advantage over the conventional introduction of these concepts in textbooks, 
where these principles are stated as applied to heat engines, of which students have no relation to and 
do not form part of the intuitive background common knowledge. 

 
It is important to note that the analysis of these concepts does not parallel the historical 

developments, but rather stems from the modern analysis of those concepts. Carnot was not aware of 
the nature of energy and the fact that heat and work are mere manifestations of energy transfer and 
conversion. However, he did recognize the analogy and expressed it in the terms of the folklore of 
those days. Only after the acceptance of the concept of energy, mainly by the widespread disclosure of 
the works of Mayer and Joule, can one start to relate the concepts of energy and temperature in a 
consistent way. This synthesis of modern classical thermodynamics, and the coinage of the word 
entropy, was later to be performed by Clausius, almost 40 years after Carnot’s book. 

 
 Nowadays, no science student has any problem grasping the concept of energy. Curiously, it 

would be quite a difficult concept to explain, had it not been introduced by colloquial usage from an 
early stage. No student thinks of energy as something “with matter” and the risk of improperly 
employing the waterwheel analogy is minimal. In spite of this, it is important to make it clear that the 
analogy proposed is actually a “crutch” that allows the understanding of the concepts of efficiency and 
entropy generation, and it should not be taken at face value. All simplifications and generalizations 
inevitably can be abused. Even the commonplace rendition of entropy as the disorder of a system can 
be terribly misleading5. 

 
Notes 
                                                
1 In modern terms, the word “caloric” should be substituted for “energy” (or heat). Taken from S. 
Carnot “Reflections on the motive power of fire”, 1824, as edited by E. Mendoza, Dover, (1988).  
2 This and other parts of this paper are adapted and translated from the textbook “Termodinámica 
Básica” by E.A. Müller, Kemiteknik (2002). The notation is described therein and in the full paper. 
3 The energy and entropy equations are written here in terms of rate equations, as is preferred for open 
systems. A full discussion is given in the paper. The reader is referred to standard textbooks for a 
comprehensive treatment, i.e. J.R. Elliott and C.T. Lira, “Introductory Chemical Engineering 
Thermodynamics” Prentice Hall (1999) 
4 In the case of the free fall (no waterwheel) the decrease in the potential energy of the water can have 
two immediate effects, either to increase the enthalpy (and thus temperature) of the downstream water, 
or if one considers isothermal conditions, it will be dissipated as heat to the environment. The latter is 
possibly the sensible assumption, thus the enthalpy of the water remains constant.   
5 F.L. Lambert “Disorder - a cracked crutch for supporting entropy discussions”, J. Chem. Ed. 79, (2) 
187-192 (2002) 
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1. Introduction
A lot of different disciplines are using thermodynamical concepts: Physics and
Physical Chemistry, Mechanical and Chemical Engineering, Material Sciences, Bio-
Sciences, Energy Conversion Techniques, Air Conditioning, Refrigeration, Heat and
Steam Turbine Engineering and much more. Hence, the slogan “Thermodynamics is
everywhere” has a great evidence. Of course, the applied thermodynamical concepts
are adapted to the special disciplines, but there is a common core for all because
today’s thermodynamics is understood as a general description of non-equilibrium
systems embracing also mechanics, electromagnetics and the quantum-mechanical
back-ground including the reversible process limit. Consequently, thermodynamical
concepts are in vivid development because of their wide range of applications. Some
of these fundamental concepts are discussed here [1].

2. A Classification
On principle, thermodynamics can be presented into two forms, as a non-equilibrium
theory of discrete systems [2] including also thermostatics, the case of equilibrium
[3], or in a field formulation extending the balances of continuum mechanics [4].

There are basic concepts allowing for a classification of them [5]. Such a classifica-
tion can be done by answering the following questions [6]:

• Is the considered system described as a discrete one or in field formulation ?

• Are temperature and entropy primitive concepts or derived quantities ?

• Is the chosen state space small or large ?

• Are all constitutive equations properly defined on the chosen state space ?

• Is the dissipation inequality global or local in time ?

• Is the relation between heat flux density and entropy flux density universal or
material-dependent ?

• What is the procedure for exploiting the dissipation inequality [7] ?

• Are complex materials described by a mesoscopic theory or by introducing
additional fields and their balances [8, 9] ?
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• Are the non-equilibrium processes restricted to endoreversible thermodyna-
mics or are they described without reversible parts ?

• Has the phenomenological description of a non-equilibrium system a correct
quantum mechanical background ?

3. Discrete Systems
3.1 Thermostatics
Well-known thermostatics describes discrete systems in equilibrium. The state space
of these systems is spanned by the internal energy, the work variables and the mole
numbers.
3.2 Non-equilibrium
Here, the state space is of higher dimension than that in equilibrium. Additional
variables are the non-equilibrium contact temperature and internal variables [10].

4. Field Formulation
Systems and their properties are described by fields.
4.1 Basic fields
As for discrete systems, the basic variables have to be chosen. That are the fields
of mass density or deformation gradient, velocity, internal energy and, if necessary,
the spin.
4.2 Balance equations
The “equations of motion” are the balances of mass, momentum, angular momen-
tum, total energy, internal energy, entropy and, if necessary spin.
4.3 Constitutive equations
The balances contain constitutive fields, such as the stress tensor, the heat and en-
tropy flux densities, the entropy, its production and supply and more. Constitutive
equations are defined on the state space which is different from the basic variables in
general. The state space may be depend on the process history (small state space)
or may be local in time (large state space). Constituive equations are restricted by
material axioms [11].

5. Fluxes of Heat and Entropy
Entropy flux density may be universally defined as heat flux density over tempera-
ture, or it is a constitutive equation independent of the heat flux density.

6. Dissipation Inequality
6.1 Global or local
The dissipation inequality, representing the 2nd law, may be global in time as e.g.
the Clausius inequality is, or it is local in time and position as the entropy produc-
tion density is [12].
6.2 Exploitation
There are different concepts to exploit the dissipation inequality in classical irre-
versible thermodynamics or in rational extended thermodynamics by Coleman-Noll
or Liu procedure [13].

7. Extended Thermodynamics
The basic variables of extended thermodynamics are those of 4.1 extended by the
dissipative part of the stress tensor and by the heat flux density. In extended ther-
modynamics, the set of the basic variables is identical to the state space on which
the constitutive equations are defined [14].
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8. General Non-Equilibrium Thermodynamics
The choice of the basic variables and of the state space is not restricted by any
rules. For exploiting the dissipation inequality, Liu’s procedure is used.

9. Endoreversible Thermodynamics
Endoreversible thermodynamics models systems consisting of reversible sub-systems
which interact irreversibly with each other. If the time is introduced (e.g. the cycle
time), this discipline is called “Finit Time Thermodynamics” [15].

10. Mesoscopic Theory
In mesoscopic theory, the basic variables of 8. are not introduced as independent
fields, but as additional variables extending space-time. Consequently, balances are
not defined on 4-dimensional space-time, but on the higher-dimensional mesoscopic
space which is spanned by time, position and the mesoscopic variables. The dis-
tribution function of the values of the mesoscopic variables allows for introducing
macroscopic fields of order parameters which are beyond the conventional theories.
The balance of the mesoscopic distribution function is of Fokker-Planck type [16].

11. GENERIC
The idea is to modify the reversible canonical equations by an additional part which
introduces irreversibility. General Equation for the Non-Equilibrium Reversible-
Irreversible Coupling postulates a rate for its basic variables which consists of the
sum of a reversible and of an irreversible part according to the basic idea [17].

12. Evolution Criteria
Beyond the positive definitenes of the entropy production density, its Ljapunov
property is postulated, that means, the rate of the entropy production is not posi-
tive. Besides this local criterion, global criteria can be derived by using the global
entropy balance equation [18, 19].

13. Quantum Thermodynamics
13.1 Irreversible quantum mechanics
Irreversible quantum mechanics is based on a modified von Neumann equation al-
lowing non-vanishing entropy rates. The Schrödinger equation is untouched.
13,2 Limited information
By introducing a relevant set of quantum mechanical observables (beobachtungsebene),
the used information is restricted to the chosen set. The statistical operators are
of generalized canonical form. Their dynamics is different from the von Neumann
one. One of them is the Robertson dynamics [20].
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1. Introduction
Usually, statistical thermodynamics starts out with the basic axiom of equal prob-
able states in the accessible part of the Γ-space. Consequently, all following re-
sults stick to equilibrium, including entropy and temperature. Therefore two steps
are necessary to proceed to non-equilibrium: firstly the introduction of a non-
equilibrium entropy [1] (and also of a non-equilibrium temperature [2] which is out
of scope here) and secondly the adaptation of the reversible quantum mechanics to
dissipation and heat exchange with an environment. Here a procedure is shortly
discussed, how to achieve this irreversible quantum mechanics clearly without mod-
ifying Schrödinger dynamics and without introducing a restricted set of observables
[3, 4].

2. Equilibrium
Starting out with the equilibrium entropy belonging to a grand canonical ensemble

Seq = kB ln Zgcan +
1

T
U − µ

T
· n, (1)

we can prove the following

Proposition: If the grand canonical distribution function pgcan
j and the grand canon-

ical density operator %gcan are introduced, the equilibrium entropy is of Shannon
shape

Seq = −kB

∑
j

pgcan
j ln pgcan

j , Seq = −kBTr(%gcan ln %gcan). (2)

3. Non-Equilibrium Entropy
According to (2), we postulate the

Axiom I: The non-equilibrium entropy is as the equilibrium one of Shannon shape

S = −kBTr(% ln %) (3)

with the non-equilibrium density operator

% =
∑

j

pj |Φj >< Φj |, 0 ≤ pj ≤ 1,
∑

j

pj = 1, (4)

1



< Φj |Φj >= 1, k 6= m : < Φk|Φm >6= 0,
∑

j

|Φj >< Φj | 6= 1, (5)

ih̄∂t|Φj > = H|Φj > . (6)

4. Modified von Neumann Equation
From (4) and (6) follows the modified von Neumann equation

Proposition:

∂t% = − i

h̄
[H, %] +

∑
j

ṗj|Φj >< Φj|. (7)

5. Non-Equilibrium Entropy Rate
Inserting the modified von Neumann equation (7) into the Shannon non-equilibrium
entropy (3), we obtain the

Proposition:

Ṡ = −kB

∑
j

q̇j ln qj , qj :=
∑
m

pm| < Φm|ϕj > |2 ≥ 0,
∑

j

qj = 1, (8)

ih̄∂t|ϕj > = H|ϕj > . < ϕj |ϕk >= δjk,
∑

|

ϕj >< ϕj | = 1, (9)

Using (6) and (9)1, from (8)2 follows the

Proposition:

q̇j =
∑
m

ṗm| < Φm|ϕj > |2,
∑
j

q̇j = 0. (10)

According to (8)1 and (10)1, we obtain the

Corollary: If the weights pj of the statistical operator (4)1 are time independent,
the system undergoes an isentropic process, and if it is isolated, this process is
reversible, as we will see below.

6. Environment induced Equilibrium Distribution
Up to now, the environment of the system is not taken into account. Here, the
influence of the environment should not be introduced by a special Hamiltonian of
interaction [2], but by an equilibrium distribution q0

j which is determined by the
special controlling of the system by the environment. So we have the microcanonical
distribution, pj = pmcan, ∧j, if the system is isolated, the canonical distribution,
if the closed system is in contact with a heat reservoir and the grand canonical
distribution, if the open system contacts a heat and mass reservoir. In general, the
q0
j are not independent of time, because the controlling of the system can change in

time during the process.

7. Entropy Rate Identity
The entropy rate (8)1 becomes by adding a zero

1

kB

Ṡ = −
∑
j

(q̇j−q̇0
j )[ln qj−ln q0

j ]−
∑
j

q̇j ln q0
j−

∑
j

q̇0
j [ln qj−ln q0

j ]. (11)
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The right-hand side of (11) has now to be split into the positive definite entropy
production Σ and the entropy exchange Φ between the system and its environment
according to

Ṡ = Σ + Φ., Σ ≥ 0, (12)
Φ = 0, for isolated sytems. (13)

8. Relaxation Ansatz
Now we need how the non-equilibrium system relaxes to equilibrium. This re-
laxation equation is necessary for determining the time rate (7) of the statistical
operator. The rate q̇j depends on the “distance from equilibrium”. Therefore, we
introduce an relaxation ansatz as an

Axiom II:

q̇j − q̇0
j = −Mj(qj − q0

j ), →
∑

j

Mj = 0, (14)

Mj(x) strictly positive monotonous : (dMj/dx) > 0, Mj(0) = 0.

Axiom II is now inserted into (11).

9. Entropy Production and Heat Exchange
According to (14), Mj , the first term on the right-hand side of (11) results in

kB

∑
j

Mj[ln qj − ln q0
j ] =: Σ ≥ 0. (15)

Because according to (14), Mj has the same sign as the square bracket in (15),
we obtain the inequality in (15) which represent the 2nd law. Consequently, the
left-hand side of (15) is the definition of the entropy production Σ.

According to (12)1, the remaining two terms on the right-hand side of (11) represent
the entropy exchange

Φ := −kB

∑
j

q̇j ln q0
j − kB

∑
j

q̇0
j [ln qj − ln q0

j ]. (16)

Using (14), we obtain

Φ = kB

∑
j

Mj ln q0
j − kB

∑
j

q̇0
j ln qj. (17)

Here are some arguments for verifying that (17) represents the entropy exchange:
a) Φ and Σ are independent of each other, because the entropy exchange is influ-
enced by the environment due to q̇0

j which does not appear in the entropy production
(15),
b) if the system is isolated (q0

j = qmcan, q̇0
j = 0, ∧j), Φ vanishes according to (14)2,

c) if the system is in equilibrium (qj(t) = q0
j (t) = constj), the entropy production

and the entropy exchange vanish according to (15) and (16),
d) if a process is reversible (qj(t) = q0

j (t), q̇0
j 6= 0), the entropy production van-

ishes according to (15) and (14), whereas according to (17) the “reversible entropy
exchange” is

Φrev = −kB

∑
j

q̇0
j ln qj = Ṡ0, (18)

3



e) an isentropic process (Ṡ = 0) is not necessarily reversible (Σ = 0) according to
(12).

10. Final Remarks
If the statistical weights of a density operator are time dependent, the Schrödinger
dynamics generates a modified von Neumann equation so that the Shannon en-
tropy rate is different from zero. Therewith, the possibility is opened for describing
dissipative quantum systems whose pure ensenbles obey Schrödinger dynamics. If
for the rate equations of the statistical weights relaxation ansatzes are chosen, a
positive definite entropy production and the entropy exchange can be defined. The
interaction of the considered system with its environment is described by using the
equilibrium distribution function which belongs to the special controlling of the
system by the environment.
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INTRODUCTION

Many-particle systems are usually studied in the canonical or the grandcanonical
ensemble. But for small systems the equivalence of ensembles breaks down and it
becomes interesting to study the microcanonical ensemble. In this context several
interesting questions arise, many of which are waiting for a satisfactory answer. Some
of these questions have controversial answers. It is therefore important to start from
generally accepted concepts. One such concept is the definition of the classical mi-
crocanonical ensemble. The problems around the ergodicity of systems of classical
mechanics have been understood long ago — see for instance [1]. There appears to be
an agreement in the scientific community that the microcanonical equilibrium distri-
bution is described in phase space by a Dirac delta function giving equal probability
to all states accessible for the system. The latter are parametrised by the total energy
U and eventually some additional internal or external parameters. For convenience
only the energy is considered here. Less clear is the answer to the question how the
thermodynamic entropy S(U) relates to this equilibrium distribution. This point
is reviewed below. A related question is whether one can define a microcanonical
temperature T or whether temperature is a property of systems in contact with a
thermal bath. This point is discussed below as well. Even more controversial is the
notion of microcanonical phase transitions and phase separation [2]. In our view we
cannot make meaningful statements about such concepts before answering the more
basic questions.

Starting point of the present work is the observation that the configurational prob-
ability distribution of classical monoatomic gases in the microcanonical ensemble is
always nonextensive in the sense of Tsallis [3]. Most efforts in the Tsallis literature
are based on Jaynes’ maximum entropy principle [4] and are therefore not very well
suited for discussing the microcanonical ensemble. But the probability distributions
discussed in nonextensive thermostatistics belong to the q-exponential family, which
is a special case of the generalised exponential family [5-12]. It is shown below that
the configurational probability distributions of a classical real gas in the microcanon-
ical ensemble always belong to the q-exponential family. A first observation in this
direction was made in [12].

The observation that the configurational probability distribution always belongs
to the q-exponential family provides a handle to discuss the above mentioned difficult
questions because the subsystem of configurational degrees of freedom can be con-
sidered as a thermodynamic system, in interaction with the subsystem of the kinetic
degrees of freedom. In particular, one can study the question whether the tempera-
ture derived via the equipartition law from the kinetic energy should coincide with
that of the configurational subsystem. Such questions have been discussed recently
in the literature [13,14].
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THE MICROCANONICAL ENTROPY

A classical model of N particles with positions qj and conjugated momenta pj is
determined by the Hamiltonian

H(q,p) =
1

2m

N
∑

j=1

|pj |
2 + V(q), (1)

where V(q) is the potential energy due to interaction between the particles themselves
and between the particles and the walls of the system. The density of states is given
by

ω(U) =
1

h3N

∫

R3N

dp1 · · · dpN

∫

R3N

dq1 · · · dqN δ(U − H(q,p)). (2)

The constant h is introduced for dimensional reasons. Note that the usual factor 1/N !
is omitted. The microcanonical ensemble is described by the singular probability
density function

fU (q,p) =
1

ω(U)
δ(U − H(q,p)). (3)

For simplicity, we take only one system parameter into account, namely the total
energy. Its value is fixed to U .

The entropy S(U), which is most often used in the classical microcanonical en-
semble, is that of Boltzmann

S(U) = kB lnω(U). (4)

The shortcomings of Boltzmann’s entropy have been noticed long ago. A slightly
different definition of entropy is [15,16] (see also [13])

S(U) = kB ln Ω(U), (5)

where Ω(U) is the integral of ω(U). An immediate advantage of (5) is that the
resulting expression for the temperature T , defined by the thermodynamical formula

1

T
=

dS

dU
, (6)

coincides with the notion of temperature as used by experimentalists, assigning a
kinetic energy of 1

2kBT to each degree of freedom. But also the latter is subject
to criticism. In small systems finite size corrections appear [13,14] for a number of
reasons. As argued in [14], the problem is not the equipartition of the kinetic energy
over the various degrees of freedom, but the relation between temperature and kinetic
energy.

THE CONFIGURATIONAL SUBSYSTEM

One can integrate out the momenta from the distribution (3). This leads to the
configurational probability distribution, which is given by

f conf
U (q) =

1

h3N

∫

R3N

dp1 · · ·dpN fU (q,p). (7)

A short calculation gives

f conf
U (q) = cN expq (−α(θ) − θV(q)) , (8)
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with

cN =

(

2πm

h2

)3N/2

, (9)

θ =
1

(1 − q) [Γ(3N/2)ω(U)]1−q , (10)

α(θ) =
3

2
N − 1 − θU, (11)

q = 1 −
2

3N − 2
. (12)

The q-exponential function is defined by

expq(u) = [1 + (1 − q)u]
1/(1−q)
+ . (13)

The notation [u]+ = max{0, u} is used. The configurational probability distribution
is said to belong to the q-exponential family because it can be written into the form
(8).

An immediate consequence of belonging to the q-exponential family is that the
entropy function is known which is maximised by (8) under the condition that the
potential energy has a given value. It is a variant of the Tsallis entropy [3] and can
be written as [12] (assume kB = 1 for convenience)

I(f) = −cN

∫

R3N

dq1 · · · dqN F

(

1

cN
f(q)

)

(14)

with

F (u) =

∫ u

0

dv lnq(v) =
u

1 − q

(

1

2 − q
u1−q − 1

)

. (15)

Here, lnq(x) is the q-deformed logarithmic function. In addition, the following iden-
tity holds

dI(f conf
U )

dU conf
= θ. (16)

Working out this identity yields

Ukin = U − U conf =
3N

2

Ω(U)

ω(U)
. (17)

This well-known expression (see for instance [16]) relates the average kinetic energy
with the total energy U via the density of states ω(U) and its integral Ω(U).

THERMODYNAMIC LIMIT

In the thermodynamic limit the deformation parameter q tends to 1 and (8) becomes
a Boltzmann-Gibbs distribution. The entropy

I(f conf
U ) =

1

2 − q

(

1 + α(θ) + θU conf
)

(18)

converges to the Boltzmann-Gibbs value provided that

[Γ(3N/2)ω(U)]
1−q

(19)
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diverges in such a way that θ, as given by (10) converges to some function of the
total energy U . This then links θ to the canonical inverse temperature β.

SUMMARY

The main purpose of the present work is to point out that the configurational prob-
ability distribution of a classical gas always belongs to the q-exponential family. The
non-extensivity parameter q is given by (12). The latter expression has appeared
quite often in the literature, see for instance [17-19].

In the limit of a large system (N → ∞) the nonextensivity parameter goes to
1 and the configurational probability distribution approximates a Boltzmann-Gibbs
distribution. In this limit the inverse temperature θ, defined by (10), is linked to the
inverse temperature β of the canonical ensemble.
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The Maximum Entropy Production Principle in Dissipative
Flow Systems
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In many physical systems subject to one or more flows, the corresponding driving gradients
(thermodynamic forces) at steady state are not a priori known, but are produced by the system
in response to the flow (or vice versa). Examples include Rayleigh-Bénard convection, in which
convective heat flow is established in response to a temperature gradient [1, 2]; the global at-
mospheric and oceanic circulation system of the Earth, in which an equator-pole temperature
gradient is established in response to differential heat fluxes [3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
biological ecosystems, in which a set of resource-waste chemical potential gradients are estab-
lished in response to flows of nutrients [11, 13, 14]; and engineered fluid flow systems, in which
shear stresses (momentum fluxes) arise in response to velocity gradients [15, 16]. Applying the
non-equilibrium thermodynamic relation to such systems [17, 18]:

jk =
∑

`

Lk`F` (1)

where jk is the kth flow and Fj is the `th thermodynamic force, we see that the global phe-
nomenological coefficients Lk` are themselves functions of the flows Lk`({jk}) and/or the forces
Lk`({F`}). Such systems all involve the formation of self-organised, complex, ordered, dissipative
structures [17, 18], for example turbulent fluid vortices, heat convection cells, water and chemical
circulation cycles and/or life. Such highly non-linear responses pose tremendous difficulties for
predictive modelling. Historically, three approaches have been adopted to redress this problem:
(i) whole-system dimensional models, in which dimensionless group arguments (Buckingham’s

Π theorem [19]) are used to correlate experimental data;
(ii) control volume analysis using empirical rules and order-of-magnitude simplifications, such

as the turbulent flow models used in computational fluid dynamics; and
(iii) highly detailed control volume analysis using local linear relations (1), in which the coeffi-

cients Lk` are assumed independent of fluxes and forces (the Onsager regime [20, 21]). This
necessitates analysis with very small grid elements and short time scales, for example the
“direct Navier-Stokes” modelling of incompressible fluid flow.

All such approaches suffer from serious limitations, including questions over the reliability of
approaches (i) and (ii), and the high computational requirements of (iii). All break down if the
physical solution is non-unique. Furthermore, the above approaches cannot easily be extended
to the analysis of coupled transport phenomena, especially if experimental data and/or empirical
constitutive relations are unavailable.

It is therefore of interest to report an additional principle which can be applied to dissipa-
tive, flow systems: the maximum entropy production (MEP) principle. This principle states that
a many-degree-of-freedom system subject to flows and/or gradients will tend towards a steady
state position at which the rate of production of thermodynamic entropy σ̇ is at a maximum.
The MEP principle was hypothesised in the 1970s [3, 4, 5] for the analysis of the Earth’s climate



system; using a simple 10-box model, surprisingly accurate predictions are obtained of the ge-
ographic distributions of cloud cover, mean latitudinal air temperature, horizontal oceanic and
atmospheric energy fluxes and net radiant energy inputs [3, 4, 5]. Since then it has been applied
successfully to the analysis of a wide range of phenomena, including circulation on other plan-
etary bodies [22], mantle convection [23, 24], biochemical systems [11, 13, 14], turbulent shear
flow [2], frictional incompressible and compressible flow [25], electrical currents [26, 27, 28, 29],
plasma formation and structure [30, 31], solid growth and diffusion [32, 33], chemical cycle ki-
netics [34], photosynthesis mechanism [35], biomolecular motors [36] and economic activity [37].
A number of detailed reviews are available [11, 38, 39, 40].

Notwithstanding the empirical successes of the MEP principle, studies of its theoretical under-
pinnings have been beset with difficulties. In recent years, Dewar [41, 42] analysed an unsteady
flow system in terms of its probabilistic flow paths, giving a derivation of the MEP principle using
an entropy defined on the set of paths. Several authors have criticised the analysis [43, 44], to
suggest that it might apply only in the near-equilibrium linear (Onsager) regime. An alternative
analysis was given by Attard [45, 46], also using a path entropy function, but expressed in terms
of traditional statistical mechanics. Heuristic derivations of the principle have been given by
Županović and co-workers [47] (also criticised [43]) and Martyushev [48]. There are also many
historical antecedents to the MEP principle [38], most notably in the work of Ziegler [49].

The aim of this work is to report a conditional derivation of the MEP principle recently
reported by the author [50], based on an entropy defined on the set of local fluxes. Consider
a fluid flow control volume divided into infinitesimal elements, each assumed to satisfy local
thermodynamic equilibrium. For an element which experiences a mean heat flux jQ, mean
diffusive mass fluxes jc of each species c (relative to the mass-average velocity v through the

element), mean viscous stress tensor τ and mean molar rate per unit volume ˆ̇
ξd of each chemical

reaction d = 1, ..., D, the steady state thermodynamic entropy production per unit volume in
each element ˆ̇σ and overall entropy production σ̇ are given by [16, 17, 51, 52]:

ˆ̇σ = jQ ·∇
(

1
T

)
−

C∑
c=1

jc ·
[
∇

(
µc

McT

)
− gc

T

]
− τ : ∇

(
v

T

)>
−

D∑
d=1

ˆ̇
ξd

Ad

T
≥ 0 (2)

σ̇ =
∫∫∫

CV

ˆ̇σ dV ≥ 0 (3)

where T is absolute temperature, µc is chemical potential of species c, Mc is the molecular mass
of species c, gc is the specific body force on each species c and Ad =

∑C
c=1 νcd µc is the molar

chemical affinity of reaction d, in which νcd is the stoichiometric coefficient of species c in the dth
reaction (νcd > 0 for production) and Ad < 0 indicates a spontaneous forwards reaction. The
stress notation of Bird et al. [16] is used in (2), in which P > 0 and τij > 0 denote compression.
In a dissipative system, (2)-(3) are indeterminate, since one or more of the global fluxes and/or
forces are unknown, being functions of the global conjugate forces and/or fluxes. However, by
applying Jaynes’ maximum entropy analysis [53, 54, 55], using a dimensionless flux entropy H∗

st

defined on the set of available instantaneous fluxes, it is possible to obtain the dimensionless
potential function [50]:

φ∗st = −H∗
st −

θV
k

ˆ̇σ (4)

where θ and V respectively are characteristic time and volume scales of the system. Eq. (4)
is analogous to the free energy function for equilibrium systems (more correctly, the negative



Massieu function [56] or Planck potential [57]), accounting for the losses of generalised potential
(or increases in generalised entropy) within and outside the system. An unsteady dissipative
flow system will therefore proceed to positions of lower φ∗st, ultimately attaining a steady state of
minimum φ∗st. If the incremental dissipative losses dH∗

st ≥ 0 and δ ˆ̇σ ≥ 0 are unrecoverable, this
will correspond to the position of maximum entropy production ˆ̇σ = ˆ̇σmax. The analysis there-
fore provides a conditional derivation of the MEP principle, quite different to those previously
proposed in the literature.

The MEP principle and the above derivation will be presented and discussed in detail.
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Abstract 

The effects of the wave nature of particles on self-thermal diffusion coefficient is analytically derived for ideal 

Maxwell, Fermi and Bose gases in a rectangular transport domain. It is shown that the wave nature of particles makes 

the transport coefficient shape and size dependent. Therefore size and shape become additional control parameters on 

thermal diffusion process. Also, the variation of quantum size effects on thermal diffusion in Fermi and Bose gases 

with quantum degeneracy are examined. Different behaviors for Fermi and Bose gases have been observed with 

increasing degeneracy. 

 

1. Introduction 

If the size of a system approaches to nano scale, quantum effects appear on time and length scales of transport 

properties and cause deviations from the macroscopic picture. Nanotechnology enables to produce nanostructures 

where the particles are significantly influenced by quantum effects [1-7]. These quantum effects become important 

when the thermal de Broglie wavelength of particles, thλ , is not negligible in comparison with the size of the 

confinement domain. Therefore, these effects are called quantum size effects (QSE) in general. QSE on transport 

coefficients have been studied for semiconductors, metals and thin films having the sizes smaller than thλ  in one 

or more directions (like quantum wells, quantum wires and quantum dots) in literature [8-12]. QSE on 

thermodynamic and transport properties of gases confined in nano structures, having the sizes close to but greater 

than thλ , where the semi-classical theories can still be used, are the relatively new research topics [13-20]. In the 

semi-classical approach, the potential acting on the wave-like particles is different than the classical particles. The 

true potential acting on the wave-like particle can be represented by adding an effective quantum potential to the 

classical one. Therefore quantum probability density is replaced by a classical probability density as long as the 

modified potential is used in distribution functions. Consequently, the quantum effects on local density are 

represented by the effective quantum potential. 

For the irreversible processes, there is a linear relation between fluxes and driving forces. The proportionality 

constants between fluxes and driving forces are called kinetic coefficients [21]. In the irreversible thermodynamics, 

each flux is a function of the all driving forces. Therefore, the flux of a quantity can be driven by more than one 

driving force simultaneously. For example, particle flux can be driven not only by density gradient but also by 

temperature gradient. In this case, temperature gradient is the secondary driving force and the particle flux due to 

temperature gradient is called thermal diffusion as a cross effect. Cross effects become important when the mean free 
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path is not negligible in comparison with the domain sizes. Therefore cross effects become significant especially in 

nano scale where also QSE are noticeable. 

The wave character of particles causes a number of modifications on some fundamental quantities. Therefore, 

transport processes of gases in nano scale are different than those in macro scale. These modifications are the 

changes in local density, momentum spectrum of particles and the smallest values of the momentum components. 

These are briefly explained respectively as follows: 

i) In macroscopic approach based on the particle nature of matter, probability density is constant in 

thermodynamic equilibrium and it is given by V1  for gas particles confined in volume V. Therefore, density of a 

gas is homogenous at thermodynamic equilibrium in macro scale. In microscopic approach based on the wave 

nature of matter, however, probability density is represented by the quantum probability density 
2

wψ , where 

wψ  is the wave function of the particle in quantum state . Ensemble average of quantum probability density w

2
wψ , represents a quantity that can be compared with the classical one. Since 2

wψ  depend on position, 

local density is not homogenous even in thermodynamic equilibrium when the wave character of particles is 

considered. On the other hand, the size of non-homogenous region is in the order of thλ . The value of thλ  is 

usually in the order of nanometer. Therefore the effect of particle’s wave character on local density becomes 

important in nano scale. 

ii) Although the momentum values of the particles are discreet, they are assumed to be continuous in macroscopic 

scale. However, if the domain size, in one or more directions, approaches to the thermal de Broglie wavelength of 

particles, this assumption breaks down and the discreet nature of the momentum values becomes important. 

iii) The lowest value of the momentum components cannot be zero due to the wave nature of particles. In other 

words, particles never move parallel to the boundaries of the domain. Hence, the false contribution from the 

surface modes to the thermodynamic and transport properties in theoretical macroscopic models should be 

excluded. This false contribution can be ignored in macro systems since the contribution from the surface modes 

is negligible in comparison with that of the bulk modes. On the other hand, it becomes noticeable in nano scale 

and the exclusion of the false contribution from the surface modes constitutes the origin of quantum size effects 

on thermodynamic and transport properties considered here. 

In this study, particle flux due to temperature gradient is analytically derived by considering QSE for ideal Maxwell, 

Fermi and Bose gases confined in a rectangular channel. Size of the nano channel in transport direction is assumed 

to be much longer than both thλ  and the mean free path of the particles l  while the sizes in other directions are 

much smaller than l  but still bigger than thλ . Therefore, it is still possible to follow the classical methodology to 

define and calculate the transport coefficient while the calculations should be done in a more precise way by 

considering the modifications mentioned above. For this size configuration, particle-boundary collisions are 

dominant. It is shown that, in nano scale, size and shape become additional control parameters on thermal 

diffusion process. 
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2. Self-thermal diffusion coefficient under quantum size effects 

Thermal diffusion is the diffusion process driven by temperature gradient and thermal diffusion coefficient is defined as 

TJD NT ∇−=
rr

. (1) 

If the gas consists of single specie, then thermal diffusion is called self-thermal diffusion. To examine QSE on 

self-thermal diffusion coefficient, a rectangular channel occupied by an ideal gas is considered. The channel is 

subjected to a temperature gradient in one direction, x1, where the size is longer than both thλ  and l. In transverse 

directions, sizes of the channel are smaller than l and bigger than thλ . Therefore particle-boundary collisions are 

dominant. To obtain the non-equilibrium distribution function f, relaxation time approximation is used while the 

summations over the particle velocities ( ) are calculated by using the Poisson summation formula to 

make the calculations precisely and exclude the false contribution from the surface modes. Particle flux due to 

temperature gradient is obtained for ideal monatomic Maxwell, Fermi and Bose gases as, 
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where Tkbµ=Λ , µ  is the chemical potential,  is the Boltzmann’s constant, bk T  is the temperature,  is the 

mean free path for particles-boundary collisions (geometric mean free path, nearly half of the volume over surface 

area of the transport domain), m is the particle mass and V is the transport volume. For a rectangular transport 

domain of dimensions L

gl

1, L2 and L3,  is obtained for Fermi and Bose gases as bg
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where Γ  is the gamma function, iα  is defined as ici LL=α ,  is the dimension of the domain in direction xiL i 

and  is the half of the most probable de Broglie wavelength, cL TmkhL bc 8/= ,  is used for the 

abbreviation of Polylogarithm function with an exponential argument of 

Li

( )Λexpm . Plus (minus) sign is used for 

Bose (Fermi) gas. To represent the pure QSE on self-thermal diffusion coefficient, dimensionless form is defined 

as ; where  is transport coefficient calculated without QSE, 0
TTTD̂ = DD / 0

TD 032 →),( αα . Therefore, self-

thermal diffusion coefficient is determined by using Eqs.(1)-(3) in dimensionless form as 

( ) ( )

12

1

21
321

2

23
322

2

8
31

32
912

LiLi

Li
Li

Li
Li

Li
Li

DT Λ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−Λ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

=

//

ˆ
ααπααπ

 (4) 

For high temperature and/or low density conditions, quantum degeneracy becomes negligible and Eq.(4) can be 

simplified by using the asymptotic forms of the Polylogarithm functions as follows for a Maxwellian gas 
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The terms in the brackets of Eqs.(4) and (5) represent the QSE and make the thermal diffusion coefficient size and 

shape dependent since 2α  and 3α  depend on L2 and L3. 



JETC 10 COPENHAGEN 22-24 June 2009 
Joint European Thermodynamics Conference 

3. Results and Discussion 

The effect of quantum degeneracy on  is shown in Fig.1. It is seen that QSE decrease with increasing 

degeneracy for Fermi gas. Mean de Broglie wave length of particles decreases with increasing degeneracy and the 

wave character becomes negligible. Therefore QSE are weaker for high degeneracy conditions. On the contrary, 

mean de Broglie wave length of particles increases with increasing degeneracy in a Bose gas. Thus, QSE become 

stronger near to Bose-Einstein condensation point. For Maxwellian limit, (

TD̂

1−<<Λ ), both curves converge to the 

same value. 
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Figure 1. Variation of QSE on  with increasing degeneracy for Fermi and Bose Gases, TD̂ 2.032 ==αα . 
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Abstract
Polymers, micro-crystalline solids, ferrofluids, liquid crystals and solids with

micro-cracks are typical examples for materials with an internal structure. They
show complex macroscopic material behavior, because the internal structure can
change under the action of external fields. There is some influence of the structure
on the microscopic level to the material behavior on the macroscopic level. There
are two principally different possibilities to deal with complex materials within con-
tinuum thermodynamics: The first way is to introduce additional fields depending
on position and time, i.e. on the macroscopic level. These fields can be internal
variables, order or damage parameter, Cosserat triads, directors, alignment and
conformation tensors. The other way is a so called mesoscopic theory. The idea is
to enlarge the domain of the field quantities. The new mesoscopic fields are defined
on the space R3

x×Rt×M . The manifold M is given by the set of values the internal
degree of freedom can take. Therefore the choice of M depends on the complex ma-
terial under consideration. We call this way of dealing with the internal structure
of complex materials a mesoscopic concept, because it includes more information
than a macroscopic theory on R3

x ×Rt, but the molecular level is not considered like
in a microscopic approach. The mesoscopic level is between the microscopic and
the macroscopic level. The domain of the mesoscopic field quantities R3

x ×Rt ×M
is called mesoscopic space. The aim of the present paper is to show the connection
between the macroscopic internal variable theory on one hand and the mesoscopic
theory on the other hand.

Especially, we will investigate the relation between an internal variable theory
and the mesoscopic theory on the example of liquid crystals. For special substances
the liquid crystalline phase exists in a certain temperature range between the or-
dinary isotropic phase and the solid crystalline phase. It is a fluid-like phase, but
showing anisotropic material properties. As macroscopic internal variable, the sec-
ond order alignment tensor, or the scalar order parameter in the uniaxial case, are
introduced, respectively. An equation of motion for the internal variable can be
derived from macroscopic thermodynamics. This results in a differential equation
of the form applied in dynamical Landau-theory of phase transitions.

On the mesoscopic level, the orientation of the non-spherical particles, the mi-
croscopic director, is introduced as the additional variable [2, 4]. The distribution
function is an orientation distribution. The alignment tensor can be defined in
terms of the mesoscopic distribution function, as a moment of the distribution. Its
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equation of motion can be derived, starting from the mesoscopic theory. Under
some simplifying assumption, we will find the same type of equation of motion [1]
for the second order alignment tensor as from macroscopic thermodynamics.

The comparison between mesoscopic and macroscopic theory gives some informa-
tion on the mesoscopic distribution function, too. It is not possible to reconstruct
completely the distribution function on the mesoscopic level, knowing only the value
of one macroscopic internal variable. This would be possible only in case of an in-
finite set of macroscopic variables, i.e. all moments of the distribution function.
Therefore, the reconstruction of the distribution function is possible only within a
certain restricted class of functions, namely the distribution functions maximizing
the entropy under the constraint of a prescribed value of certain moments [3]. This
leads to a certain exponential form of distribution function with one yet unknown
parameter. The parameter in the distribution function is identified by exploiting
the entropy production. We end up with an orientation distribution function, given
in terms of the mesoscopic variable, the microscopic director, and a derivative of
the macroscopic entropy density.
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 Based on Newton's laws reformulated in the Hamiltonian dynamics, we show that a suitably defined 

nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general. This 

entropy varies between well defined bounds determined by the thermodynamic entropy, i.e., the 

equilibrium entropy. We define this nonequilibrium entropy as a convex functional of the set of n-particle 

reduced distribution functions (n ≤ N)  generalizing the Gibbs fine-grained entropy formula. Additionally, 

as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free 

entropic oscillator. Therefore, a new conception of time and the time arrow arises. In the approach to the 

equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-

particle distribution function.  
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Since many years, equations of state (EOS) are acknowledged through 
industrial and academic worlds as powerful thermodynamics models to 
represent the phase behaviours of pure substances and multicomponent 
systems. Initially developed by Van der Waals, the first EOS capable of 
handling both liquid and gas phases, has shown the way to several 
generations of thermodynamicists. Numerous models are then born and 
among these: the cubic EOS that industrialists nearly exclusively used until 
the end of the twentieth century. However, since the beginning of the 90’s, a 
new generation of EOS is emerging and drawing more and more the 
attention: the molecular theory-derived EOS and among these, the SAFT 
(Statistical Associating Fluid Theory) equations. 
These models are much more complicated than the cubic ones but are also 
very promising. As an example, SAFT EOS appear able to represent 
complex molecules like associating fluids (ammonia, water, alcohols, etc.) 
or polymers which are often considered as borderline cases for cubic EOS. 
In this work, we propose to make a comparison between two predictive 
models [1,2] based on EOS reputed for their efficiency and issued from 
different backgrounds: the one stemming from the cubic Peng-Robinson 
EOS [3] and the second one, from the PC-SAFT EOS [4]. The two 
considered predictive models use the group contribution concept. It means 
that the thermodynamic properties can be deduced from the chemical 
structure of the compounds making up the studied mixture. 
In this way, the ability of the two models to predict the phase behaviour is 
tested out on some pure components and binary systems, ordered according 
to their chemical family. The reliability and the efficiency of these equations 
for industrial purposes will be discussed. 
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Abstract

In this paper we simulate a two dimensional relativistic ideal gas by implementing a relativistic elastic

binary collision algorithm. We show that the relativistic gas faithfully obeys Jüttner’s speed distribution.

Furthermore, using this numeric simulation in conjunction with the relativistic equipartition theorem for

a relativistic gas, we find compelling numerical evidence that moving objects should appear cooler.

1 Introduction

Let us denote by T the temperature of a thermodynamic system as measured in its rest frame K, and by T ′

the temperature of the same system measured by an inertial frame K′ in motion with speed u relative to K.

In 1907 Mosengeil, Planck, and Einstein [1, 2, 3], independently showed that

T ′ = T/ γ , (1)

where γ = (1 − u2/c2)−1/2 is the relativistic factor. In other words, a moving system appears cooler.1 In

1963 Ott [8] arrived to a completely different result

T ′ = Tγ . (2)

According to Ott, a moving system is hotter. Although hints of Eq. (2) appeared in literature [6] before

Ott, it is Ott’s paper that have ignited the controversy on rendering the thermodynamic quantities in their

special relativistic form. Despite the large number of papers published on this subject, today there is no

∗E-mail: crasinariu@colum.edu
1From now on, we will refer to Eq. (1) as “Plank’s formula” for the relativistic transformation of the temperature.
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general consensus regarding the special relativistic thermodynamics. Because an exhaustive discussion on

the history of this issue is beyond the scope of our paper, the interested reader should consult [11, 12, 13, 15]

and the references therein. To illustrate the relativistic thermodynamics imbroglio, we will limit to just a

few examples. In 1966 Landsberg proposed the invariance of temperature [9]

T ′ = T , (3)

while Balescu [10] explored the possibility that all relativistic transformations are in fact equivalent to each

other, via some sort of “gauge” transformations. It is interesting to note that in 1952, in an unpublished

letter to von Laue [13], Einstein argued in favor of temperature transformation (2), thus contradicting his

previous results [3]. However, one year later, in another letter to von Laue [13], Einstein pondered whether

the temperature should be actually considered a relativistic invariant. Landsberg [15], will revisit several

times this question, before concluding that special relativistic thermodynamic transformations are impossible.

Probably, the lack of a general agreement on how to transform relativistically the thermodynamic quantities

is the main reason that special relativistic thermodynamics is absent from most modern physics textbooks.

A direct experiment on relativistic thermodynamics is hampered by the high temperatures and the

relativistic speeds involved. In this paper, we are trying to partially overcome this difficulty, by using

computer simulations of a two-dimensional relativistic ideal gas. We simulate a two dimensional gas enclosed

inside a rectangular container, whose point-like particles move relativistically, and experience only elastic

collisions. How hot is this gas? If the gas simulated in this paper would be a classical (i.e. non-quantum)

proton gas, then we simulate a container whose temperature reaches 5.44× 1012 K, and which is boosted to

speeds up to 80% of the speed of light. These are conditions that cannot be easily realized in laboratory.

In this simple model, we find that our relativistic gas faithfully obeys Jüttner’s speed distribution [4]. In

addition, by using the relativistic equipartition theorem [12], we find that our numeric simulations, strongly

favor Planck’s transformation formula (1). Thus, we uncover compelling numeric evidence that moving

objects should appear cooler.

2 Computer Simulations

We consider a two-dimensional ideal relativistic gas whose point-like particles experience only elastic colli-

sions. The gas is enclosed inside a rectangular container, with perfectly reflecting walls, which conserve the

energy-momentum of the colliding particles. Throughout the rest of this paper we will use a system of units

where the speed of light, the mass of the particles, and Boltzmann’s constant are all taken equal to one:

c = 1, m = 1, kB = 1.
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The thermodynamic system is at rest in the lab when the container is at rest, and the average velocity

of its particles is zero 〈~v 〉 = 0. If the gas is in thermal equilibrium at temperature T = 1/β, its speed

distribution is given by Jüttner’s formula [4, 7]

f(v) = vγ4

v exp (−β γv) /Z , (4)

where γv = (1 − v2)−1/2 is the Lorentz factor, and Z = e−β(1 + β)/β2 is a normalization constant, chosen

such that
∫ 1

0
f(v) dv = 1. Then, the average energy is given by 〈E〉 ≡

∫ 1

0
Ef(v)dv = (β2 +2β +2)/(β2 +β) .

We will use this information to find the reciprocal of the temperature of the system at rest, from measuring

its average energy. We get

β =
(

2 − 〈E〉 +
√

〈E〉2 + 4 〈E〉 − 4
)

/ (2〈E〉 − 2) . (5)

2.1 Numeric results

For the experimental setup we took 100, 000 identical particles, which initially, were randomly distributed

inside a rectangular box, and given the same initial speed in arbitrary directions. We chose the following

initial speeds: vinit = 0.2, 0.5, and 0.8. After thermalization, these initial conditions lead to the following

reciprocal temperatures β = 49.45, , 7.25, and 2.00 respectively.

During one time step the computer algorithm checks for possible collisions with a) the wall of the container

(the box has the edges parallel with x and y axes), and b) with another particle. If none occurs, the particle

advances one time step with the same velocity.

a) Collisions particle–wall: If the particle hits the left or right wall, it reflects around the x-axis. If it hits

the top or the bottom wall, the particle reflects around the y-axis.

b) Collisions particle–particle: Point-like particles have practically no chance to collide if only contact,

zero-range interactions are present. To bypass this difficulty, we defined an “interaction area” around each

particle as follows. If (xi, yi) are the coordinates of particle i as measured by an observer at rest with

respect to the container, and if particle j arrives at (xj , yj) such that (xi − xj)
2 + (yi − yj)

2 ≤ R2, then

the two particles “collide”. The distance R is chosen to be much smaller than the linear dimensions of the

container. The algorithm “locks” the two particles when colliding, thus ignoring the possibility of a third

particle to participate in collision. This simplifies the simulation and does not introduce errors greater than

a one percent. Knowing the “in” states of the particles entering the collision we determine the “out” states

by using only the conservation of the energy-momentum. However, in this last step, which is solved in the

center of mass of the two particles, one has to choose an “interaction angle” θ for the outgoing particles, as

3
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θ
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Figure 1: The interaction as seen in the center of mass of the two particles. Here q1 and q3 are the momenta of

the incoming and respectively outgoing particle 1. Similarly, q2 and q4 are the momenta of the incoming and

respectively outgoing particle 2. The angle θ between incoming and outgoing particles is chosen randomly.

illustrated in figure (1). Since particles are modeled as zero-size points experiencing only elastic collisions,

θ is not meaningfully defined. Therefore, we used a pseudo-random number generator to assign a random

value to the “interaction” angle θ, for each collision.
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Figure 2: Jüttner’s speed distribution curves (plain lines) vs. the experimental speed distribution (dotted

lines) for a relativistic 2-d gas at reciprocal temperatures β = 49.45, β = 7.25, and β = 2.00 respectively.

The area under each distribution curve is equal to the total number of particles, N = 100, 000.

We monitored the average energy per particle, and considered that the system reached thermal equilib-

rium when the average energy per particle fluctuated by less than 0.001%. From the onset of the experiment,

the equilibrium was usually achieved after 40, 000 time steps. After the system reached thermal equilibrium,

we determined its temperature by means of Eq. (5). By plugging the measured value back into Eq. (4), we
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were able to compare the theoretical curves with the histograms of the speed distribution obtained from our

computer modeling. In figure (2) we illustrate the experimental results versus the theoretical predictions for

the 2-d relativistic gas. The figure collects data from three different experiments: low temperature (with the

corresponding reciprocal temperature β ≡ mc2/kBT = 49.45), intermediate temperature (β = 7.25), and

respectively high temperature (β = 2.00). The agreement with Jüttner’s distribution is remarkable in all

cases.

3 Statistic temperature and the relativistic equipartition

In classic (non-relativistic) statistical thermodynamics, we used the energy equipartition theorem to establish

a connection between the average kinetic energy and the temperature. Specifically, the average kinetic energy

per each degree of freedom i (in kB = 1 units) is equal to

〈KEi〉 =
1

2
Tclassic ≡

1

2βclassic
, i = x, y, z . (6)

Eq. (6) is a very general result, which we want to extend to the relativistic gas.

3.1 Relativistic equipartition

It is well-known [7] that for a relativistic gas, neither the relativistic kinetic energy, nor the total relativistic

energy is equipartitioned. Therefore, we want to find a dynamical variable whose average per degree of

freedom is related to β, and which can be consistently generalized to systems in motion.

Let us define [5, 14]

Li =
p2

i

2
√

p2 + m2
, i = x, y, z . (7)

Then, using Jüttner distribution (4), one can immediately show that for our two dimensional gas one obtains

〈Lx〉 = 〈Ly〉 =
1

2β
. (8)

This equation is the relativistic equivalent of Eq. (6). It can be used to define the temperature of the

relativistic gas, and it should give the same numerical values as Eq. (5).

We have experimentally checked the validity of formula (8) for several reciprocal temperatures. The

results are summarized in Table 1, where we have denoted βx = [2〈Lx〉]
−1

and βy = [2〈Ly〉]
−1

. The control

parameter is the reciprocal temperature β obtained via Eq. (5), and is recorded in the first column. Ideally,

we would expect that β = βx = βy. Note that the numeric simulations show a good agreement with the

theory.
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β βx βy

199.49 198.94 200.11

49.45 49.63 49.33

21.63 21.87 21.42

7.25 7.34 7.18

2.00 1.99 2.03

Table 1: Relativistic equipartition for the ideal gas.

3.2 The relativistic transformation of temperature

The main idea is to use the equipartition theorem to gain intuition into the relativistic transformation of

the temperature. To this end, we should find first an extension of Eq. (8) to moving systems. Then, based

on the success with the systems at rest, we define the temperature of the moving system using the analog of

Eq. (8). Finally, we will check numerically whether this newly defined temperature transforms according to

Planck’s formula, Ott formula, or obeys another transformation law.

Following reference [12], we rewrite Li as Li = pi vi/2, i = x, y. Then, the equipartition theorem (8)

becomes

T ≡ 1/β = 〈px vx〉 = 〈py vy〉 . (9)

In this form, we can readily construct a generalization of the equipartition theorem for moving systems. We

say that an ideal gas system is in translation with the speed ~u with respect to the lab, if the average velocity

of all its particles measured by a stationary observer in the lab is 〈~v 〉 = ~u. Without loss of generality, we

will consider the system moving along the x-axis. Then, for the moving system K′, we can check that the

quantities L ′

x = p ′

x (v ′

x − u) / 2 and L ′

y = p ′

yv ′

y / 2 are equipartitioned. For a detailed proof of this result, the

reader should consult the reference [12].

Consequently, we define the temperature of the moving system K ′ via

1/β ′ ≡ T ′ = 〈p ′

x (v ′

x − u)〉 = 〈p ′

y v ′

y〉 . (10)

Equation (10) is a good tool to identify which of the various relativistic transformation temperature

formulas proposed in literature is consistent with this experiment. Planck’s formalism gives β ′

Planck = β γu,

while Ott’s formalism gives β ′

Ott = β/γu, where γu = (1 − u2)−1/2 is the usual Lorentz factor.

Choosing the same rest reciprocal temperatures as before (β = 49.46, 7.25 and 2.00), we tested Eq. (10)

for the boost speeds u = 0.2, 0.4, 0.6, and respectively 0.8. The results are presented in Figure 3. The
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(b) The relativistic transformation of the temperature

for relative medium (β = 7.25) and high (β = 2.00) rest
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Figure 3: Note that for the boost speeds u = 0.2, 0.4, 0.6, and 0.8 the agreement between β ′

x, β ′

y and β ′

Planck

is remarkable. We observe that with the increase of the temperature, β ′

x shifts slightly below the values of

β ′

y. In contrast, β ′

Ott is clearly diverging from the experimental trend.

robustness of the numeric algorithm was checked by repeating the experiments with different form factors

for the rectangular box.

4 Conclusions

In this paper we solved the non-trivial problem of relativistic two-dimensional molecular dynamics and

showed that a relativistic ideal gas faithfully satisfies Jüttner’s speed distribution function. Using as guid-

ance the relativistic equipartition theorem, we have experimentally checked that the numeric simulations

strongly favor the Mosengeil, Planck, and Einstein relativistic transformation formula. Thus, according to

our simulations, moving objects should appear cooler.
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Abstract

This review article deals with a synthetic presentation of results derived in [1],
where an approach for describing magnetic after-effects phenomena in conti-
nuous media was presented, in the framework of non-equilibrium thermody-
namics [2]-[7].

In particular, a thermodynamic theory for magnetic relaxation phenomena
was developed by the author and G.A.Kluitenberg in the joint work [1], assuming
that an arbitrary number of microscopic phenomena occur which give rise to
magnetic relaxation and that it is possible to describe the contributions of these
microscopic phenomena to the macroscopic magnetization using n macroscopic
vectorial internal variables of axial character m

(i) (i = 1, ..., n) so that the
total specific magnetization m can be split in n+1 parts

m = m
(0) + m

(1) + ... + m
(n). (1)

Introducing in the expression of the entropy these partial specific magnetiza-
tions, the phenomenomenological equations are derived in the anisotropic and
isotropic cases.

Furthermore, using a suitable form for the specific free energy f to linearize
the equations of state, provided the phenomenological coefficients may be re-
garded as constants, generalizations of Snoek equation for magnetic relaxation
phenomena in the anisotropic and isotropic cases are obtained, if the internal
variables are eliminated from the formalism, and these relations are used nowa-
days by theoretical mechanicians, applied physicists and electronic engineers to
study magnetic after-effects in magnetizable complex media in many physical
situations.

In the isotropic case this relaxation equation has the form of a linear relation
among the magnetic field B, the first n derivatives with respect to time of this
field, the total magnetization vector M (being M = ρm with ρ the mass
density) and the first n + 1 derivatives with respect to time of M
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χ
(0)
BMB + χ

(1)
BM

dB

dt
+ ... + χ

(n−1)
BM

dn−1
B

dtn−1
+

dn
B

dtn
=

χ
(0)
MBM + χ

(1)
MB

dM

dt
+ ... + χ

(n)
MB

dn
M

dtn
+ χ

(n+1)
MB

dn+1
M

dtn+1
, (2)

where χ
(k)
BM (k = 0, 1, ..., n− 1) and χ

(k)
MB (k = 0, 1, ..., n + 1) are constant

quantities, which are algebraic functions of the coefficients occurring in the phe-
nomenological equations and in the equations of state, and n is the number of
phenomena that give rise to the magnetization vector.

These results generalize some results derived by G.A.Kluitenberg in [8]-[10].
In particular, in [8] G.A. Kluitenberg developed a thermodynamic theory for
some types of dielectric and magnetic relaxation phenomena, by assuming that
a polar and an axial vector field occur as internal thermodynamic degrees of free-
dom and that these fields influence the polarization and magnetization, respec-
tively. Snoek equation for magnetic after-effects and Debye theory for dielectric
relaxation phenomena in polar fluids are obtained as special cases of this theory.

In [9], it was shown that if there is a “hidden” vectorial internal variable Z,
which influences the magnetization M, this leads to the possibility to write the
total magnetization in the form

M = M
(0) + M

(1), (3)

where M
(0) is proportional to the magnetic field B and is called reversible part

of M, because there corresponds a sudden change in M
(0) to an instantaneous

change in the magnetic field B. M
(1) is a function of Z only and may replace Z

as internal variable. It is connected with magnetic after-effects (i.e. M
(1) is the

irreversible part of M). M
(1) is a measurable quantity in contradistinction to an

arbitrary ”hidden” vectorial internal degree of freedom which is not measurable
in general. Furthermore, it was shown that this theory (with M

(1) as internal
variable) becomes formally completely analogous to the Snoek theory if the
equations of state are linearized, and that in the isotropic case the following
relation may be derived

χ
(0)
BMB +

dB

dt
= χ

(0)
MBM + χ

(1)
MB

dM

dt
, (4)

where χ
(0)
BM , χ

(0)
MB and χ

(1)
MB are constants.

In [10] the theory developed in [8] and [9] is generalized and a different formu-
lation is given by assuming that in principle all changes in the magnetization are
irreversible phenomena so that both changes in M

(0) and M
(1) are irreversible

processes (a change of the magnetization cannot be infinitely fast because it is
connected with the motion of any kind of microscope particles) and in the linear
approximation, eliminating the internal degree of freedom from the formalism,
for isotropic media the following relaxation equation is obtained

χ
(0)
BMB +

dB

dt
= χ

(0)
MBM + χ

(1)
MB

dM

dt
+ ... + χ

(2)
MB

d2
M

dt2
, (5)
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where χ
(0)
BM and χ

(k)
MB (k = 0, 1, 2) are constant quantities.

Equation (2) is a generalization of Snoek equation for magnetic relaxation
phenomena.

Furthermore, we notice that this magnetic relaxation equation has the same
mathematical structure of a stress-strain relation for mechanical distorsional
phenomena in isotropic media (a generalization of Burgers equation), derived in
1968 by G. A. Kluitenberg in [11], where a thermodynamic theory for mechani-
cal phenomena in continuous media was developed using analogous procedures,
in the frame of non-equilibrium thermodynamics [2]-[7]. Assuming that n micro-
scopic phenomena give rise to inelastic strains (for instance, slip, dislocations,
etc.) and that the total inelastic deformation is additively composed of contri-
butions of these inelastic strains, introducing these inelastic strains as internal
variables in the Gibbs relation, the following relation is obtained

R
(τ)
(d)0τ̃αβ + R

(τ)
(d)1

dτ̃αβ

dt
+ ... + R

(τ)
(d)n−1

dn−1τ̃αβ

dtn−1
+

dnτ̃αβ

dtn
=

R
(ε)
(d)0ε̃αβ + R

(ε)
(d)1

dε̃αβ

dt
+ ... + R

(ε)
(d)n

dnε̃αβ

dtn
+ R

(ε)
(d)n+1

dn+1ε̃αβ

dtn+1
, (6)

where R
(τ)
(d)m (m = 0, 1, ..., n − 1) and R

(ε)
(d)m (m = 0, 1, ..., n + 1) are

constant quantities, which are algebraic functions of the coefficients occurring
in the phenomenological equations and in the equations of state, and n is the
number of phenomena that give rise to inelastic strains, τ̃αβ is the deviator of
the mechanical stress tensor and ε̃αβ is the deviator of the tensor of total strain.

The stress -strain relations for ordinary viscous fluids, for thermoelastic me-
dia, and for Burgers, Maxwell, Kelvin, Jeffreys and Poynting- Thomson media
are special cases of the more general relation mentioned above

Also, we notice that equation (2) has the same mathematical structure of a
dielectric relaxation equation, obtained by the author and G. A. Kluitenberg in
1988 in [12], where a thermodynamic theory for dielectric relaxation phenomena
was developed, assuming that n arbitrary microscopic phenomena give rise to
the total polarization vector and that it is possible to describe the contributions
of these microscopic phenomena introducing n partial polarization vectors as n
macroscopic vectorial internal variables in the expression of the entropy.

This dielectric relaxation equation is a generalization of Debye equation and
it has the following form in the isotropic case

χ
(0)
EP E + χ

(1)
EP

dE

dt
+ ... + χ

(n−1)
EP

dn−1
E

dtn−1
+

dn
E

dtn
=

χ
(0)
PEP + χ

(1)
PE

dP

dt
+ ... + χ

(n)
PE

dn
P

dtn
+ χ

(n+1)
PE

dn+1
P

dtn+1
, (7)

where E and P are the electric strength field and the polarization vector, re-

spectively, χ
(k)
EP (k = 0, 1, ..., n−1) and χ

(k)
PE(k = 0, 1, ..., n+1) are constant

quantities, algebraic functions of the coefficients occurring in the phenomeno-
logical equations and in the equations of state, and n is the number of pheno-
mena that give rise to the total polarization vector.

3



We hope that such a synthetic approach to the magnetic relaxation phe-
nomena in continuous media contributes to a better understanding of the links,
correlations and differences that exist beteween the various theories at our dis-
posal in a subject matter in full development.
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Concepts of everyday use like energy, heat, and temperature have acquired a precise meaning after the 

development of thermodynamics. Thermodynamics provides the basis for understanding how heat and 

work are related and with the general rules that the macroscopic properties of systems at equilibrium 

follow. Outside equilibrium and away from macroscopic regimes most of those rules cannot be applied 

directly. We present recent developments that extend the applicability of thermodynamic concepts deep 

into small-scale and irreversible regimes. We show how the probabilistic interpretation of 

thermodynamics together with probability conservation laws can be used to obtain kinetic equations for 

the relevant degrees of freedom. This approach provides a systematic method to obtain the stochastic 

dynamics of a system directly from its equilibrium properties. A wide variety of situations can be 

studied in this way, including many that were thought to be out of reach of thermodynamic theories, 

such as non-linear transport in the presence of potential barriers, activated processes, slow relaxation 

phenomena, and basic processes in biomolecules, like translocation and stretching.   
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We first present the different models of a mixture of compressible fluids and we
discuss in the case of Euler fluids the local and global well-posedness of the rela-
tive Cauchy problem for smooth solutions. Then we present a classical approach
of mixture of compressible fluids when each constituent has its own temperature.
The introduction of an average temperature together with the entropy principle
dictates the classical Fick law for diffusion and also new constitutive equations
associated with the difference of temperatures between the components. The
constitutive equations fit with results obtained through the Maxwellian iteration
procedure in extended thermodynamics theory of multi-temperature mixtures.
The differences of temperatures between the constituents imply the existence
of a new dynamical pressure even if the fluids have a zero bulk viscosity. The
non-equilibrium dynamical pressure can be measured and may be convenient in
several physical situations as for example in cosmological circumstances where
- as many authors assert - a dynamical pressure played a major role in the
evolution of the early universe.
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Abstract

We study the shear-induced diffusion effect and the transition to irreversibility in suspensions under oscillatory shear
flow by performing an analysis of the mesoscopic entropy production associated with the motion of the particles. We
show that the Onsager coupling between different contributions to the entropy production is responsible for the
scaling of the mean square displacement on particle diameter and applied strain. We also show that the shear-induced
effective diffusion coefficient depends on the volume fraction, and use lattice-Boltzmann simulations to characterize
the effect through the power spectrum of particle positions for different Reynolds numbers and volume fractions. Our
study gives a thermodynamic explanation of the transition to irreversibility through a pertinent analysis of the second
law of thermodynamics.

1. Introduction

To understand how the behavior of many-particle systems may become irreversible upon the action of an external
driving force is one of the fundamental problems of thermodynamics and statistical physics since their foundation
[1]. An analysis based on the second law of thermodynamics reveals that this transition can be explained within the
framework of non-equilibrium thermodynamics [2].

The transition from a reversible (oscillatory) to an irreversible (chaotic) behavior of massive (non-Brownian) parti-
cles subjected to an oscillatory shear in a Taylor-Couette cell [3, 4] is described from the mesoscopic entropy production
rate of the particles, derived from the second law, and the Onsager relations connecting the diffusion current to the
driving force, the shear flow [2, 5]. This mesoscopic entropy analysis leads to the formulation of a Fokker-Planck
equation for the N-particle distribution function describing the dynamics of the suspended phase, and from which the
dynamical description of the system is performed [2].

The observed chaotic behavior of the trajectories of the particles, whose origin is the presence of hydrodynamic
interactions, can be interpreted macroscopically as a shear-induced diffusion effect in which the diffusion coefficient
Deff scales according to the relation [2, 3, 6]

Deff ' d2γ̇, (1)

where d is the diameter of the suspended particle and γ̇ is the shear rate.
We have analyzed this diffusion process by means of the mentioned Fokker-Planck and computed the corresponding

effective diffusion coefficient after performing a contraction of the description [2, 5, 7, 8]. Our analysis explains the
behavior of the mean square displacement 〈r2〉exp(t) observed in the experiments when the applied shear is small [3]

〈x2〉exp(t) ∼ Deff t. (2)

Our theoretical analysis, complemented with Lattice Boltzmann simulations [9], shows that the irreversibility in-
herent to the chaotic behavior of the macroscopic motions of particles is perfectly compatible with the second law of
thermodynamics.

2. The mesoscopic entropy production and the shear induced diffusion

We consider a suspension of N non-interacting spherical particles of radius a and mass m in a fluid which moves
with velocity ~v 0(~r, t). Since the system is in contact with a heat bath that evolves in time, we will determine the



2

physical nature of the coupling forces by taking into account two factors. The first one is that the evolution of the
system can be described at mesoscopic level by means of the normalized N -particle probability distribution function
P (N)(ΓN , t), that depends on the instantaneous positions {~r}N ≡ (~r1, ..., ~rN) of the particles and their velocities
{~u}N ≡ (~u1, ..., ~uN) through the phase space vector ΓN = ({~r}N , {~u}N ). The second factor is that the interactions
between the system and the heat bath, involving dissipation, suggest the use of the nonequilibrium entropy s(t) as a
thermodynamic potential from which the entropy production σ(t) can be calculated, and used to obtain the explicit
expressions for the mentioned coupling forces [10].

Using probability conservation and the generalized Gibbs entropy postulate,

δs(t) = −kB

∫ N∑

i=1

P (N) ln
P (N)

P
(N)
l.eq.

δ(~ri − ~r)dΓN , (3)

where δs is the entropy change with respect to a local equilibrium reference state characterized by the local equilibrium
distribution function

P
(N)
l.eq. = e

m
kBT [µB−

∑N
i=1

1
2 (~ui−~v0

i )2]. (4)

and where µB is the local equilibrium chemical potential per mass unit and ~v 0
i = ~v 0(~ri, t), after calculating the

entropy production, identifying the different contributions and coupling currents and forces using linear relationships,
one obtains the multivariate Fokker-Planck equation describing the evolution of the N -particle distribution function

∂P (N)

∂t
+

N∑

i=1

∇~ri
· (~uiP

(N)) =
N∑

i,j=1

∂

∂~ui
·
{[

(~uj − ~v0
j ) · ~~βij −

~~ζij · ~Fj

]
P (N) +

kBT

m
~~αij ·

∂P (N)

∂~uj

}
, (5)

where ~~αij = ~~βij −~~εij · ∇~rj
~v0

j and the tensors ~~ζ, ~~ε and ~~β are related to the Onsager coefficients. This full N-particle
description can be reduced to the single-particle description by contracting it over N-1 particles and by assuming an
effective medium theory [11]. This contraction leads to the effective Smoluchowski equation

∂ρ

∂t
= −∇ ·

[
ρ~v0 − ρβ−1

0

(
~~1 + ~~̃µ

)
· ~f − ρζβ−1

0

(
~~1 + ~~̃µ

)
· ~F

]
+ ∇ ·

(
~~D · ∇ρ

)
, (6)

where we have found the effective diffusion tensor

~~D(~r, t) = kBT/m~~µ +
a2

6
(1 + 2a α)

[(
~~1 + ~~̃µ

)
· (~~E −~~1) · ∇~v0

] s

. (7)

In Eqs. (6) and (7), the force ~f is due to hydrodynamic interactions as ~f = −(kBT/m)∇· ~~A and the mobility tensor
~~µ = ~~B

−1

− β−1
0

~~1 is defined through the average of the hydrodynamic interactions over the structure of the system

~~B(~r, t; φ) = β−1
0

∫
~~β(~r′) · ~~β(~r ′)g(~r − ~r′, t; φ, T )d~r. (8)

The tensor E(φ) is also defined in terms of an average over the structure of the system. The dependence of these
tensors on the volume fraction φ is due to the fact that the two-particle correlation function g may in general depend
on the volume fraction and the temperature, [12].

From the Smoluchowski equation one may compute 〈r2〉exp(t) which, for low oscillation frequencies and low shear
amplitudes in the limit of non-Brownian particles, that is when kT /m → 0, gives

〈r2〉 ∼
1
6
µ̃xy(φ)[E(φ) − 1]d2γ̇t. (9)

Thus, the theoretical effective diffusion equation Deff = 1
6 µ̃xy(φ)[E(φ)−1]d2γ̇ has the same scaling as the experimental

one and implies that it is dependent on the volume fraction due to the hydrodynamic interactions between particles.
The analysis of the behavior of the system can be complemented by performing Lattice Boltzmann simulations [2, 9].

These simulations confirm the linear dependence of the shear induced diffusion coefficient on the Reynolds number
of the particles and allows to characterize in more detail the transition between deterministic oscillating dynamics of
the particles in terms of the power spectrum of particle trajectories, as it is shown in Figures 1 and 2.



3

1.95

2.10

2.25

2.40

2.55

18.30 18.40 18.50 18.60

(a)

y
∗

x∗

1e-12

1e-08

1e-04

0 20 40 60 80 100

(b)

P
S

f∗

Re = 0.08
Re = 0.07
Re = 0.01

FIG. 1: (a) Trajectory and (b) power spectrum of the x−displacements of one particle for different Reynolds numbers when
φ = 0.14 and the oscillating frequency is f∗ = 10.0. The power spectrum of the y−displacements displays a similar behaviour.

3. Conclusions

The transition from a reversible (oscillating) to and irreversible (chaotic) dynamics observed in the macroscopic
motions of a suspension of non-Brownian particles under oscillating shear flows is fully compatible with the second law
of thermodynamics. The analysis of the mesoscopic entropy production shows that it is due to an Onsager coupling
mediated by hydrodynamic interactions, and that it depends on the volume fraction, in accordance with experiments
and simulations.
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Finite time thermodynamics concepts are usually applied to the optimization of processes in systems, where 
the underlying working medium changes only continuously. In particular, the most powerful applications 
are of the horse-carrot type, where the optimal control of the process is achieved by establishing a small 
and essentially constant thermodynamic distance between the control and the system. 
 
If the process involves a first-order phase transition, however, the thermodynamic metric exhibits a 
singularity, and it becomes necessary to set up and solve the full optimal control problem which is 
dominated by the dissipative effects due to the transition. As an example, we investigate the transition from 
the gaseous to the liquid state by modeling the liquification of the gas in a finite time.[1] We introduce and 
solve the optimal control problem in which we aim to achieve the gas-liquid first-order phase transition 
through supersaturation within a fixed time in an optimal fashion, in the sense that the work required to 
supersaturate the gas, called excess work, is minimized by controlling the appropriate thermodynamic 
parameters. The resulting set of coupled non-linear differential equations is solved for three systems, 
nitrogen, oxygen and water. 
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Abstract 

The two-phase and critical behavior in non-isothermal binary liquid mixtures is examined. The approach developed 

earlier is used to calculate the necessary dynamic parameters. The stationary concentration distribution in the 

temperature gradient is calculated. At certain crit ical temperature and below, the resulting expression predicts a 

critical behavior and the layering of liqu id phases in the mixture. At the crit ical temperature, the inflection point 

appears at the concentration distribution at the respective coordinate point. With decrease of temperature, this 

inflection is transformed into a jump in the concentration, which corresponds to the thermodynamically equilibrium 

concentrations of the components at the temperature established at this point. If the temperature gradient exceeds a 

certain critical value, the stepwise concentration distribution is predicted. It allows binodal-like and spinodal-like 

behavior in non-isothermal systems to be considered.  

 

Introduction 

 

The aim of this article is the analysis of critical and two-phase behavior in binary liquid systems placed in a 

temperature gradient using the mass transport equations obtained previously. When a liquid mixture is placed in a 

temperature gradient, there is movement of the components, generating a concentration gradient, what is known as 

thermodiffusion or the Ludwig-Soret effect. Experimental and theoretical results on thermodiffusion can be found in 

Ref. [1]. 

As the thermodiffusion experiments are based on the data on the temperature-induced concentration distribution, 

equations describing the mass transport are necessary. In our previous paper (Ref. [2]) the equations of the mass 

transport in thermodiffusion were obtained. This approach uses the standard form of the mass conservation equations 

for the components  

 i it J   


 (1) 

where i is the volume fract ion of the i
th

 component,  iJ


 is its mass flux, and t is time. The dynamic parameters 

(mass diffusion, cross-diffusion and thermodiffusion coefficients ) are calculated by the hydrodynamic approach 

suggested in Ref. [3]. About the same results can be obtained by the thermodynamic approach.  

This hydrodynamic approach considers the flow of liquid around the particle caused by a local pressure gradient, 

as defined by the Navier-Stokes equation 

 locloc fu


    (2) 

where u


 is the velocity of the liquid, loc  is the local pressure distribution around the particle,   is the dynamic 

viscosity of the liquid, and locf


 is the local volume force in the surrounding liquid.  

Modifying the approach used in the theory of particle diffusiophoresis [4], we showed [3] that the local pressure 

distribution can be obtained from the condition of hydrostatic equilibrium in the uniform liquid  taken together with 

condition of the local equilibrium in temperature gradients. These conditions give the local pressure gradient in a 

liquid around the molecule of i
th

 kind  

 
1

N
iji

loc j j j

jj

Φ
T

v
  



     (3) 



where 
j  is the cubic thermal expansion coefficient of the liquid of molecules of type j, 

j  is the volume fract ion 

of these molecules, jv  is the specific molecular volume for the molecule of the j
th

 kind, and ij  is the interaction 

potential between molecules of the i
th

 and j
th

 kind.  

For liquids with low electrical conductivity 

  
3

6( ) 16 9ij i j i jr A A rr r    (4) 

where Ai and Aj are the respective Hamaker constants, r is the radial coordinate for a spherical molecule, and ri and rj 

are the molecu lar radii. In the hydrodynamic approach, we have the fo llowing expressions for the partial cross-

diffusion coefficient and the partial thermodiffusion coefficient defined as the velocity of a selected particle of the i
th
 

kind per unit  concentration gradient of the j
th

 component and per the unit temperature gradient, respectively:  
28 27Dij iH i j jb r A A v                   (5);                                           Tij j Dijb b                  (6) 

where
iHr  is the hydrodynamic radius of the particle .    

Substituting the drift flux of the considered component into respective Eq. (1), we obtain the mass transport 

equations. In a system, where a temperature and/or concentration gradient exist, a macroscopic pressure gradient 

should be established to keep the hydrostatic equilibrium in the system. The respective barophoretic mass fluxes also 

are included in the mass transport equations. In general case, the macroscopic pressure gradient is derived from the 

mass transport equations. For the closed steady-state systems it can be described by the Gibbs-Duhem equation (Ref. 

[5]).  

In a temperature gradient, the mass transport equation for the components can be written as 

      2 2 2 2
1 2

1 1 1

1 1 1 1 1
1

H

D v v v
T

t v v v


              

 

      
                             

 (7) 

where  2
 and  11

are the volume fractions of the respective components, 1D , 2D  are their diffusion 

coefficients, 1v , 2v  are the partial volumes of the components, which are about the same as their specific molecu lar 

volumes 1v , 2v , 
3

1,2 1,24 3H Hv r , 11 1 1 1 14 3D Hb D v A v kT   , 1 2 2 1v A v A  , 

1 2 2 1H H Hv A v A  , and 2 2 1 1v D v D  is the parameter related to the dynamic pressure gradient 

established in the non-stationary system. In Eq. (7), the parameter   characterizes the value of the intermolecular  

interaction in one component, and the parameter characterizes the ratio in the intermolecular interactions between 

the components.  

 

 Results and Discussion 

The term  

    2 2 2

1 1

1 1 1
1

eff

D v v
D

v v
     

 

 
      

    
 (8) 

in Eq. (7) is the effective diffusion coefficient. In stable systems, 0effD   (Ref. [5]). However, at 1  , the 

diffusion coefficient becomes zero at the point сx , where  

 
1

2 11c v v


                 (9);                     2

1 1 14 1 3c H сT v A v k     (10) 

At cT T , there is the two-phase domain described by the equilibrium curve  

           21 1 2c c cT х T х х х              (11) 

which separates stable equilibrium concentrations  1e T  ,  2e T  from unstable region where 0effD  T. 

The equilibrium concentrations are obtained from Eq. (11). Note, that in the non-isothermal system, the equilibrium 

concentration and temperature are the function spatial distribution of the temperature. 

         Near the critical point, the stationary mass transport equation [Eq. (7)] can be written as 



      
2

1 21 1c c c c c T                   (12) 

where    2 1 1 1H Hv v       . The solution of Eq. (12) is  

       3
1 2( ) 3 1 1c c c c c cx T T x                          (13) 

The concentration distribution described by Eq. (13) is the continuous function and it has the inflection point at the 

position
cx , where

c    and 
cT T . See Fig.1 (a). 
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Fig. 1.  A typical concentration distribution in binary mixture (a) around the critical point and (b) in the two-phase 

domain 

The typical critical concentration distribution is shown in Fig. 1a.  The condition of the mass conservation 

  
0

L

x dx L    (14) 

imposes some limitations on the concentration range, where crit ical concentration distribution with the inflection 

point can be established. Here,  is the mean volume fract ion of the second component in the uniform mixture , and 

L is the dimension of the measurement cell. According to evaluations, the maximal deviat ion in the in itial mean 

volume fraction from the crit ical volume fraction 1 2c  is about several percent.  

       Th is situation possesses the characteristic “critical” features. It is realized only at the unique temperature and the 

concentration, and within narrow range of the in itial uniform concentrations. 

        When temperatures in the system are decreased below the critical point, the effective diffusion coefficient effD  

[Eq. (8)] becomes negative for two volume fract ions 1 2,e e  , which are the equilibrium concentrations in the two-

phase system at the temperature corresponding to some point 0x  [see Fig. 1(b)]. 

In this two-phase system, the stationary Eq. (9) can be written in two different forms: 

 1 1 1e e T
x


    


  


,     at 1e       (15a);         2 2e T

x


   


  


,    at 2e                 (15b) 

The solution of Eqs. (17a, b) is:  

   1 1 1 02e T ex T x T                        (16a);               2 2 2 02 1e T ex T T x                     (16b)   

       The designations  x and  x  are used for the domains with the lower and higher concentration, 

respectively.The position of the point 0x  and temperature  0 0T x can be found by the condition of the mass 

conservation  

    
0

00

x L

x

x dx x dx L       (17) 

 For systems, which are far from the critical point, Eq. (17) takes the form 
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

 
 (18) 

In the raise of the mean volume fraction  from 
1e to

2e , the position 
0x changes gradually from L to zero, 

respectively, and the layers of different thickness may be obtained.  

      In two-phase domain, the position 
0x of the concentration jump corresponding to the phase boundary may be 

controlled in a wide range. It may be done by the gradual change in the mean uniform concentration  and by the 

scanning the temperature profile in the cell, while maintaining the same temperature drop between the walls.  

 

Binodal- and s pinodal-like behavior  

     When the temperature grad ient is too high, the solutions expressed by Eqs. (13, 16) cannot hold the place along 

the whole system. In some point in the space, the slowly changed curve of the concentration distribution (13) or (16) 

should have the intersection with the curve of the spatial distribution of the equilibrium concentration [Eq. ( 11)] 

changed faster. At this point, we will have again the situation similar to the point 
0x  considered above, but at a 

lower temperature. Near this point, the concentration distribution should have the shape similar to one of the 

branches described by Eqs. (16). in this way, we will have a step of the concentration. This step, in turn, will have 

the own intersection with the equilibrium curve (11). The number of these steps will depend on the system 

parameters and can be calculated. These calculations show that this stepwise concentration distribution can begin 

from both crit ical point, if it is present, and from the point of the temperature jump. The relations between the 

number and the height of the concentration steps  and the physical parameters of the system are obtained. These 

features of the concentration distribution allow the behavior of the non-isothermal system to be considered in terms 

of the binodal (smooth) and spinodal (stepwise) layering. This analogy is discussed, as well as the thermodynamic 

stability of the obtained concentration distributions.  

   

Conclusions 

   The critical behavior and phase layering in non-isothermal b inary liquid mixtures are examined using the mass 

transport equations. The stationary concentration distribution in the temperature gradient is calculated. Close to 

critical temperature and below, the resulting expression predicts a critical behavior and the layering of liquid phases 

in the mixture. At the critical temperature, the inflection point appears in the concentration distribution at the 

corresponding coordinate point. This situation may be seen in an experiment in a very narrow ran ge of the 

concentrations, about several percent, around the critical concentration. With decrease of temperature, this in flect ion 

is transformed into a jump in the concentration, which corresponds to the thermodynamically equilibrium 

concentrations of the components at the temperature established at this point. At temperatures significantly lower 

than the critical one, the phase layering with the controllably changed position of the phase boundary can be 

obtained. This situation can be used to manipulate the suspended particles in the predetermined manner.  

When the temperature gradient exceeds some critical value, the steps in the concentration distribution are appeared. 

This stepwise concentration distribution can be considered as the analog of the spinodal decomposition in uniform 

system. 
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Abstract 

A thermodynamic approach to mass transport is applied to liquid mixtures in a temperature gradient. The consistency of the 

Onsager equations for the component mass flux is evaluated with the resulting conclusion that heats of transport are equal to 

the chemical potentials of the components  to eliminate thermodiffusion in pure liquids. In an open and/or non-stationary 

system, consistency between the Gibbs-Duhem equation and the Onsager equations is impossible. The dynamic p ressure 

gradient is calculated. Coefficients of mass and thermodiffusion are described adequately over the entire compositional 

range of a mixture. It is shown that the thermodynamic approach combined with the microscopic calculation of the chemical 

potential provides the same results as the previous hydrodynamic approach in the derivation of the thermodiffusion 

coefficient in diluted molecular system.  

 

Introduction 

Certain refinements in non-equilib rium thermodynamics are necessary for non-isothermal mixtures when the 

components are not diluted. In order to simplify the problem, we examine here a binary mixture. Our mot ivation is based on 

three observations:  

1. Current non-equilibrium thermodynamics approaches to mass transport fail to provide an unambiguous description 

of concentrated systems, in that component behavior depends on which component is considered to be the solvent.  

2. In thermodynamic theories of thermal diffusion, the heat of transfer is formulated into equations for the Soret 

coefficient. We argue that a component’s heat of transfer must equal its chemical potential. Without such equality, certain 

consequences follow that violate the condition of hydrostatic equilibrium in the non-isothermal system.  

3. Usually, the Gibbs-Duhem equation is used to derive the pressure gradient. We will show that viscous drag in an 

open or/and non-stationary system causes additional dynamic pressure gradient.  

 

Consistency Conditions for Onsager Mass Fluxes  

The thermodynamic approach is based on the rate of entropy production   [1, 2]:

      1 1 2 21eJ T J T J T       
  

  (1) 

Here, eJ


is the energy flux, 1J


and 2J


are the mass fluxes of the two components, 1  and 2  are their chemical potentials, 

and T is temperature. The energy flux and temperature profile are defined by the difference in temperature at the system 

boundaries ([2], Ch. 16), while the mass flux is defined by the following continuity equation: 

 i in t J   


 (2) 

Here in is the numeric volume concentration of the i
th

 component and t is time. The mass flux is further defined by non-

equilibrium thermodynamics as [1, 2]: 

     1i i i i i iQJ n L T n L T    


 (3) 

where iL and iQL are the Onsager coefficients .  

In order to utilize Eq. (3) in a predictive capacity, it is transformed into a form that contains component concentrations 

and other physically measurable system parameters:  
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k k
l k

l l

n v P T
n T



 




 
      

 
  (4) 

where P is the internal macroscopic pressure of the system and kv  is the partial molecu lar volume. The thermodynamic 

approach utilizes the Gibbs-Duhem equation for the pressure gradient [3, 4]: 

 

2 2

1 1

i i
i k

i k k

P n n T
n T

 

 

  
     

  
    (5) 



Eq. (5) defines the pressure gradient required to maintain hydrostatic equilibrium. Substitution of Eqs. (4, 5) into Eqs. (3) 

yields 

      1 1
1 1 1

2

1 2 1
L v T

J T q
Tv T T

 
    



     
         

   


 (6) 
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         

   


 (7) 

where 
i iQ iq L L is the heat of transport, and  2 2 1 1v v     is the combined chemical potential [1, 2].  

An equation similar to Eq. (5) has been used to calculate diffusion and thermal d iffusion coefficients  [5]. In formulat ing 

Eqs. (6, 7) we have introduced the volume fractions 
2 2 2n v    and 

1 1 1 1n v    , and substituted specific 

molecular volumes 
1v and 

2v for the partial molecu lar volumes 
kv  used in Eq. (4) and (5).  

Equations (6) and (7) are two non-equivalent expressions that relate mass flux to the volume fraction  of a component 

in a non-isothermal system. Consequently, the result will depend on which equation is used. In practice Eq. (7) is used to 

define the transport of the dilute component in a mixture, while transport of the solvent is defined through conservation of 

mass.  In mixtures where more than one component is concentrated, the result will differ depending on which component is 

selected as the solvent.  

In order for Eqs. (6) and (7) to be made consistent, the following conditions must be met: 

 
1 1q                     (8);               

2 2q                    (9);              1 2 0J J 
 

                  (10) 

 The conditions defined by Eqs. (8) and (9) eliminate the motion of pure liquid in a temperature gradient, which would be 

inconsistent with the Gibbs-Duhem equation.  

While the condition defined by Eqs. (8) and (9) should be accepted for any system, Eq . (10) is fulfilled only in a closed 

system that is stationary. Consequently, Eqs. (6) and (7) are incompatib le with the Gibbs-Duhem equation for any system 

that is open and non-stationary. 

Combin ing either of Eqs. (6) and (7) with Eqs. (8-10), we obtain the equation: 

  1 2 0T
T

 
  



   
     

  
 (11) 

which can be used to obtain the stationary concentration distribution and any related parameters. Then, we obtain the 

following expression for the Soret coefficient in the diluted system:  

                     
 

 0 0

2 1 2 1

1

1 2
TS v v

T kT T


 

 

 
       

  (12) 

where 
0

1  and 
0

2  are the chemical potentials of the pure component and the isolated specie of the second component in 

the solvent, respectively, 

 

Dynamic Pressure Gradient and Barodiffusion  

In an open or non-stationary system, the total mass flux or the component fluxes can be non-zero.  

Here, the mass transport equations can be obtained, calculating the pressure gradient using Eqs. (7) and (8), and 

considering P and   as unknown functions: 
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 (14) 

Eq. (13) described the dynamic p ressure gradient established in open and non-stationary systems. It is different of the 

Gibbs-Duhem pressure gradient predicted by Eq. (5). 



Similar equations were obtained using a kinetic approach [6, 7]. Compared to Eq. (11), the mass flux in Eq. (14) 

contains the term J


  responsible for the solute drift in the open system. When the molecules entering through one 

boundary may leave the system through another, the component meets viscous resistance, which creates a dynamic pressure 

gradient and barodiffusion in the system. This situation is not considered in the Gibbs-Duhem equation.  

For ideal solutions, the effective diffusion coefficient given by Eq. (14) can be expressed as 

  
 

 
2 1

2

2 2 1 1

1

1
eff

v v
D D

D v D v

 


 

 


 
 (15) 

where  iD  is the Stokes-Einstein diffusion coefficient in the real liquid mixture. Eq. (15) accurately pred icts the 

diffusion coefficient at any concentration. For dilute systems, the dynamic barodiffusion factor 

 
1

2 2 1 11 D v D v 


     allows the effective diffusion coefficient described by Eq. (18) to be transformed into the 

Stokes-Einstein expression. Without such a factor the model of Dhont [5] and the other models fail to provide this 

physically reasonable behavior, even in ideal solutions. 

The effect of dynamic barodiffusion on measurements of diffusion and thermodiffusion is even more significant fo r 

polymers and colloidal particles because parameter
2 2 1 1D v D v , which reflects the role of the dynamic pressure gradient, 

can be quite large. For example, in a study by Duhr and Braun of DNA molecu les [8], the thermodiffusion coefficient of 

DNA was reported to decrease with chain length. To date there is no theoretical exp lanation for this observation.  

     For dilute systems, the expression for the thermodiffusion coefficient is

    0 02
2 1 2 1 2 2 1 11

2
T

D
D v v D v D v

kT T
   

 
          

 (16) 

According to Eq. (16), the thermodiffusion coefficient may decrease with increasing solute size, prov ided 

 2 2 1 1 1D v D v   . This condition can be fulfilled even at 1  . Therefore, Eq. (16) is consistent with the behavior of 

diluted DNA solutions reported by Duhr and Braun [8].  

 

Microscopic calculation of T   

In this section, we calculate the parameter T  involved in the Soret coefficient [Eq. (12)] and compare the results 

obtained with the hydrodynamic approach [6].  

In the calculation of the parameter
T




, it is convenient to use the microscopic approach and consider the diluted 

system. We can use the thermodynamic theory of the perturbation [9]. The chemical potential of the isolated suspended 

molecule can be written as [9] 
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 (17) 

where 11 and 12 are the intermolecular interaction potentials solute-solvent and solvent-solvent, respectively,  

2

22p m


is the kinetic energy of the particle expressed through its momentum p


and 2m , and the last right-hand term 

corresponds to the change in the solvent-solvent interaction due to the presence of the solute. The angular brackets mean the 

averaging in the thermodynamic sense using the Hamiltonian of the unperturbed system. For the averaged kinetic  energy, 

we obtain
2

22 3 2p m kТ


, both for the solute and solvent molecules. For  this reason this term cannot cause any 

thermodiffusion. The last term in the angular brackets can be expressed as a local pressure gradient  established around 

the solute. After the calculations, where the princip le of the local equilibrium is systematically used, we obtain  

    1 0 12 1 1r r v  
 

 (18) 

Here 0 is the macroscopic pressure which is changed very weakly at the molecu lar length but may be non-uniform at the 

macroscopic length. It is calculated from the condition that the solvent must be at the mechanical equilibrium, that is 

 0

1 0r r  
 

.    

The intermolecular interaction potential can be written as  [6, 7] 



  
6

12 12 12 1r     (19) 

where 
12 is the energy of the interaction, and 

12 is the closest approach distance. Using Eq. (19), we obtain:  
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where
3

12 124 3v  , and 
T is the solvent thermal expansion coefficient. The respective parameters for the 

solvent are
11v ,

11 , and 
11 . 

     Eq. (21) is very close to the expression for the Soret coefficient obtained in [10] by the hydrodynamic approach, when 

one assumes 12 11 22   , and introduces the respective hydrodynamic radii equal to
11 ,

12 .  The “thermodynamic“  

and “hydrodynamic” expressions predict the same dynamic behavior o f the isolated solute molecu le or homopolymer chain, 

and the differences are related rather to the approximations used in the calculations. For example, the direction of the 

thermophoretic motion always is determined by the inequalit ies
11 2 11 12 1 12 1v v v v   ,

11 2 11 12 1 12 1v v v v   , and the 

parameter   
11 2 11 12 1 12v v v v  is determined mainly by the geometry and physical properties of the molecules but not by 

their dimensions.  

   

 

Conclusions  

When the thermodynamic approach is evaluated, we find that the equations for mass flux are inconsistent unless the 

heats of transport are equal to the respective chemical potentials. Then, the unacceptable effect of mot ion in pure non-

isothermal liquids is eliminated.  

Our analysis also demonstrates that the Gibbs -Duhem equation is inadequate for open and non-stationary systems. By 

defining the dynamic pressure gradient, a distinction is made between the equilibrium pressure gradient predicted by the 

Gibbs-Duhem equation and the dynamic pressure gradient in an open and/or non -steady state system.  

Application of the model to ideal systems accurately predicts the diffusion coefficient at any concentration.  

Highly structured macromolecules suspended in a solvent can create large dynamic pressure gradients. It is found that 

such effects may qualitatively exp lain the measured size dependence of thermodiffusion in DNA experiments.  

The microscopic calculations of the chemical potential for the isolated solute give the expression for Soret coefficient 

close to the respective expressions obtained by the hydrodynamic approach.  
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The Gibbs-Tisza-Callen formalism presents a deductive and axiomatic nature. This thermodynamic 

formalism started with Gibbs’ studies, which are often known as Gibbsian thermostatics, introduced a 

new approach in thermodynamics. These works achieve an elegant and economic way of expressing all 

classical thermodynamic principles on an equation on entropy, internal energy, volume and mole numbers 

of all intervening chemical compounds: the so-called fundamental equation of the system [1-2]. 

Many authors obtain equations of state or other relations based on empirical assessments that translate the 

thermodynamic properties of a given system in a given range of conditions [3-5]. However, according to 

the Gibbs-Tisza-Callen formalism, it is of great importance to know the fundamental equation, because it 

summarizes all available information within a single equation that contains more than the initially 

available equations. With the fundamental equation we are then able to determine all equations of state, 

the thermodynamic coefficients and the equilibrium conditions, thus obtaining a full knowledge on the 

system’s behavior. 

However obtaining the fundamental equation of a thermodynamic system is not always an easy task, once 

the available data is often acquired from empirical assessments. Thus this data leads to empirical models 

based on equations whose variables are necessarily experimentally measurable, like temperature, pressure 

and volume, among others. With these equations it is not straightforward to obtain a fundamental 

equation because they are not functions of internal variables like entropy or internal energy. 

In addition, the complexity of the procedure to obtain a fundamental equation is strongly related to the 

nature of the variables presented in the available equations. However the basis of the method followed to 

obtain the fundamental equation is the same, i.e. the resolution of a system of partial differential equations 
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subjected to all available information and the constraints from intensive variables and definition of 

thermodynamic coefficients. 

Due to the diversity among the empirical information that might be available it becomes impossible to set 

up a clear method which necessarily results in obtaining the system’s fundamental equation. However a 

set of recommendations in order to obtain the fundamental equation should take into account the 

following goals by order of relevance: 

a. decrease the level of differentiation of the variables, through integration; 

b. determine the unknown functions that result from the integration processes, given that we are 

integrating partial derivatives. 

In this context we developed an iterative sequence of procedures in order to obtain the fundamental 

equation from equations of state, thermodynamic coefficients or other equations involving any 

combinations of variables and taking into account the mathematical framework of Gibbs-Tiszia-Callen 

formalism and the use of Maxwell relations: 

1. Integrate, if possible, one of the available partial derivatives, considering both the entropy and the 

energy scheme. If it is not possible to integrate any available partial derivative, try to replace 

variables in order to obtain equations with partial derivatives that allow integration. 

Execute step 2 only if it was impossible to perform step 1. 

2. For equations without thermodynamic coefficients or first derivatives of unknown functions obtain 

other partial derivatives. For each partial derivative obtained: 

a. Use Maxwell relation to transform partial derivatives in other derivatives. 

b. If there are other equations that involve thermodynamic coefficients, use their definitions 

and, if necessary, Maxwell relations to obtain other thermodynamic coefficients from partial 

derivatives already obtained. 

Execute step 3 only if it was impossible to perform step 2. 

3. If the available equations contain thermodynamic coefficients, use the following relations in order to 

obtain other coefficients (note that only two of these equations are independent). 

௉ܥ ൌ ௩ܥ ൅
ଶߙܶݒ

்ߢ
  ; ்ߢ   ൌ ௦ߢ ൅

ଶߙܶݒ

௉ܥ
   ;   

௉ܥ
௩ܥ

ൌ
்ߢ
௦ߢ

 

Execute step 4 after each previous step (1 to 3) successfully achieved. 

4. For equations with unknown functions, perform the following: 

a. For equations of one variable and one unknown function, determine directly the unknown 

function. 
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b. For equations of two variables, apply the separation of variables and perform step 4a with 

the equation obtained. 

c. For more than one equations of the same three variables with unknown functions of only 

one or two of them, try to eliminate the remaining variable(s) and perform step 4 again. 

If the fundamental equation is not obtained, resume step 1 considering all supplementary information. 

 

The proposed method for obtaining fundamental equations for systems of a single component was 

verified for the examples presented in Table 1. These results show a wide range of applicability of the 

method. 

Table 1: Examples in obtaining the fundamental equation for systems with a single component following the 
proposed method. 

Initial information Fundamental equation 

ܶ ൌ
ଶݏܣ3

ݒ
 

ܲ ൌ
ଷݏܣ

ଶݒ
 

ݑ ൌ ଴ݑ ൅
ଷݏܣ

ݒ
െ
଴ଷݏܣ

଴ݒ
 

ߙ ൌ
ܲܣ
ଶܶݒ

 
ݑ ൌ  ଶܶܤ

ݏ ൌ േ
ܤ√
2
൬√ݑ ൅

ݒ
଴ݒ
ඥݑ଴൰ ט

଴ݏݒ
଴ݒ

േ
ݒ
ܣ2

ሺݒ ൅  ଴ሻݒ

ݒܲ ൌ ܴܶ 
்ߢ
௦ߢ

ൌ ݏ ܽ ൌ ଴ݏ  
ln ݒ ቀܽ െ 1

ܴ ቁݑ
ଵ

௔ିଵ

ln ଴ݒ ቀ
ܽ െ 1
ܴ ଴ቁݑ

ଵ
௔ିଵ

 

perfect gas model 

ݑ ൌ ܴܿܶ   
௉ܥ ൌ ௩ܥ ൅ ܴ 
lim
்՜଴

ݒ ൌ 0 

ݏ ൌ ଴ݏ ൅ ܴܿ ln
ݑ
଴ݑ
൅ ଵܭ ln

ݒ
଴ݒ

 

virial model 

ܲ ൌ ܴܶ෍
௜ܤ
௜ݒ

ஶ

௜ୀଵ

 

lim
௩՜ஶ

൫ݏ െ ሺீ௉ሻ൯ݏ ൌ 0 
lim
௩՜ஶ

൫ݑ െ ሺீ௉ሻ൯ݑ ൌ 0 

ݏ ൌ ଴ݏ ൅ ܴ ln
ݒ
଴ݒ
൅ ܴܿ ln

ݑ
଴ݑ
െ ܴ෍

௜ܤ
௜ିଵݒ

ஶ

௜ୀଶ

 

van der Waals model 

ܲ ൌ
ܴܶ
ݒ െ ܾ

െ
ܽ
ଶݒ
 

lim
௩՜ஶ

൫ݏ െ ሺீ௉ሻ൯ݏ ൌ 0 
lim
௩՜ஶ

൫ݑ െ ሺீ௉ሻ൯ݑ ൌ 0 

ݏ ൌ ଴ݏ ൅ ܴ ln ൤൬
ݒݑ ൅ ܽ
଴ݑݒ

൰
௖ ݒ െ ܾ

଴ݒ
൨ 
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Furthermore the proposed method allowed us to obtain, as far as we know, some new results, e.g. the 

fundamental equation for a simplified virial equation with constant coefficients. 

Our method also allowed us to determine the fundamental equation from the van der Waals equation of 

state already determined by Callen [2] who argued that it was an arbitrary result. However by using the 

proposed procedure we concluded that this is a consistent and logical result because we only used the 

equation of state and the assumption that the van der Waals model should reduce to the perfect gas model 

with an infinite volume or a null pressure. 

 

Acknowledgements 

This work was supported by the FCT grant no. SFRH/BD/46794/2008. 

 

List of references 

[1] L. Tisza, Generalized Thermodynamics. (The MIT Press, Massachusets, 1966). 

[2] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd ed. (John Wiley 

& Sons Ltd, New York, 1985). 

[3] I Made Astina and Haruki Sato, Fluid Phase Equilibr. 221, 103-111 (2004). 

[4] Q. Chen, R. Hong and G. Chen, Fluid Phase Equilibr. 269, 113-116 (2008). 

[5] H. Miyamoto, T. Koshi and M.Uematsu, J. Chem. Thermodyn. 40, 558-566 (2008). 



JETC 10, Copenhagen, 22-24 June 2009  

 

Theoretical Limits of Internal Combustion Engines Miniaturization  

E. Sher1, I. Sher2 and D. Sher3 

1The Sir Bagrit Professor, The Pearlstone Center for Aeronautical Studies, Department. of Mechanical 
Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel, sher@bgu.ac.il 

2Department of Process and Systems Engineering, Cranfield University, Cranfield, Bedfordshire MK43 0AL, 
United Kingdom 

3Department. of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 

Small-scale energy conversion devices are being developed for a variety of applications; these include 
propulsion units for MAV. In some cases, batteries supply the required power, though their low energy density 
significantly limits their energy capacity per weight, and the energy supply units represent a substantial fraction 
of the total load carried by the assigned platform.  

The high specific energy of hydrocarbon and hydrogen fuels, as compared to other energy storing means, like, 
batteries, elastic elements, flywheels, pneumatics, and fuel cells, appears to be an important advantage, and 
favors the ICE as a candidate. In addition, the specific power (power per mass of unit) of the ICE seems to be 
much higher than that of other candidates like fuel cells, photovoltaic, and battery units.  

However, micro ICE engines are not simply smaller versions of full-size engines. Physical processes such as 
combustion, gas exchange, and heat transfer, are performed in regimes different from those occur in full-size 
engines. Consequently, engine design principles are different at a fundamental level, and have to be re-
considered before they are applied to micro-engines. Scaling-down results in larger heat losses to the cylinder 
walls (due to the high area to volume ratio of the combustion chamber), smaller effective combustion volume 
and higher fuel consumption (due to the high portion of the quenching volume), and, higher flow losses, slower 
combustion and mixing processes (due to the small dimensions, thus low Reynolds numbers). 

When a Spark-Ignition (SI) cycle is considered, part of the energy that is released during combustion is used to 
heat-up the mixture in the quenching volume, and therefore the flame-zone temperature is lower and in some 
cases can theoretically fall below the self-sustained combustion temperature. The flame quenching thus seems to 
limit the minimum dimensions of a SI engine. This limit becomes irrelevant when a Homogeneous-Charge 
Compression-Ignition (HCCI) cycle is considered. In this case friction losses and charge leakage through the 
cylinder-piston gap become dominant, constrain the engine size, and impose minimum engine speed limits.  

In the present work a phenomenological model has been developed to consider the relevant procuresses inside 
the cylinder of a Homogeneous-Charge Compression-Ignition (HCCI) engine. The lower possible limits of 
scaling-down HCCI cycle engines are proposed. The present work postulates the inter-relationships between the 
pertinent parameters, and constitutes the lower possible miniaturization limits of IC engines. 
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A liquid droplet in high speed trajectory through ambient gas is a prevalent case in spray injection systems. The 
fate of such a droplet is of importance to the prediction of overall spray characteristics. The phenomenon of 
droplets breakup to smaller droplets is referred to as secondary breakup in the context of spraying systems. This 
phenomenon poses some fundamental problems of transformation between different energetic states.  

A theoretical analysis of the problem is presented, in which an overall energy balance is examined, that includes 
surface, kinetic and dissipation energies. Transformation between states, i.e. between a droplet and its breakup 
products, is a spontaneous process, under instantaneous trajectory conditions that include drag forces. 
Transformation involves the reversible surface and kinetic energy transitions, and the irreversible viscous 
dissipation energy.   

Non-isothermal conditions, as in the common case of injection into a hot ambient, poses a further effect of 
transient surface tension, and consequently transient surface energy. These can be determined by an additional 
balance of thermal energy, and a simple model of surface tension dependency on temperature, based on a 
modified van der Waals state equation. 
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Prediction of surface tension and excess volume is of out standing importance in many scientific and 

technological areas. As a fundamental parameter, surface tension is the single most accessible parameter 

that describes the thermodynamic state and contains implicit information on the internal structure of a liquid 

interface. Apart from this theoretical interest, a detailed understanding of the behaviour of a vapor-liquid 

interface, such as enrichment of one component in a liquid surface is important for modeling a distillation 

process. The study of excess volume leads with the two structural aspects that is, size difference of 

molecules and interaction forces between molecules.  

In the present work, the Prigogine [1] corresponding states principle for the bulk properties of liquids is 

extended[2] to their surface tension. The Prigogine-Saraga cell model theory [3] of surface tension is then 

used together with the statistical mechanical theory of Flory [4]. The component liquids (six binaries) which 

are taken in the present work are (tetrahydrofuran+ 1,2,4-trimethyl benzene, tetrahydrofuran+1,3,5- 

trimethyl benzene, tetrachloromethane +1,2,4- trimethyl benzene, tetrachloromethane +1,3,5- trimethyl 

benzene,  dimethyl solfoxide+ 1,2,4- trimethyl benzene and dimethyl solfoxide+ 1,3,5- trimethyl benzene 

over the entire concentation range at 298.15 K. for theoretical prediction of surface tension and excess 

molar volume. Though the model was derived for γ-meric spherical chain molecules, but its application to 

polar-non polar cyclic liquid mixture have been carried out successfully which have immence sense of 

applicability in organic separation and synthesis as solvent.  Further, we found that computed results are in 

good agreement with the experimental findings. The results so obtained have been explained on the basis of 

packing effect and dipolar-dipolar interactions. An attempt has also been made to study the excess 

thermodynamic functions which are the measure of extent of molecular interactions involved in the liquid 

mixture.  

Theoretical  

Prigogine and Sarage [3] have given a simple cell model of the surface tension of spherical 

molecule liquids based on (6,12) potential. In the following extension, a segment is moving from the bulk to 

the surface experiences an increase of the configurational energy equal to due to the loss of a 

fraction, M, of its nearest neighbour at the surface. The resulting reduced surface tension in case of vander 

Waals liquid is;  
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The statistical theory of Flory [4] yields the following equation for surface tension of liquid and 

liquid mixtures as; 

                                 (2) )(
~~

* vσσσ =

Flory theory is closely connected with the corresponding state theory of Prigogine. Patterson and Rastogi 

[5] in their extension of the corresponding- state theory, dealt with the surface tension in terms of reduction 

parameters, 

3/1*3/2*3/1* Tpk=σ                 (3) 

The equation for excess volume according to Flory theory can be expressed as  
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All the notations used in the above equations have their usual significance as detailed out by Flory.  

 The excess surface tension can be expressed as  

][ idlcal
E σσσ −=                (7) 

Results and Discussion  

 Surface tension, excess surface tension and excess molar volume for six cyclic polar-non polar 

liquid mixtures namely[1] (tetrahydrofuran+ 1,2,4-trimethyl benzene,[2] tetrahydrofuran+1,3,5- trimethyl 

benzene,[3] tetrachloromethane +1,2,4- trimethyl benzene,  [4] tetrachloromethane +1,3,5- trimethyl 

benzene, [5] dimethyl solfoxide+ 1,2,4- trimethyl benzene and [6] dimethyl solfoxide+ 1,3,5- trimethyl 

benzene, have been predicted over the whole composition range at 298.15 K. All the necessary data have 

been taken from the work of P.Chuanrong et.al.[6]. The results of theoretical excess volume and surface 

tension are found fairly good both in magnitude and sign as compared with experiment. The results of VE
Cal 

values shows positive for system [1], [6], [4] and [3] and negative values for system[5]and [2]. The values 

of excess surface tension are positive for systems [2] and [3] and negative for [6], [5], [4] and [2]. Since the 

theoretical results are very close to experimental finding it can be concluded that interactions are weak 

because 1,3,5 trimethyl benzene is a symmetrical non-polar molecule. Negative values of σE can be 

interpreted in terms of little stronger interactions which are dipolar-dipolar in nature. The positive value of 

VE are possibly due to packing effect.  

 Conclusively it can be stated that Prigogine-Flory-Patterson model is very much suitable for the 

systems having weak molecular interactions particularly in nonpolar-polar cyclic liquid mixtures. Negative 

and Positive  deviations in the values of VE and σE are capable to decide the nature of solvent in the 

distillation process. 

 



Mole Fractions (X1), Excess Volume (VE), Surface Tension (σexp), Surface Tension (σtheo), and Density 
(ρ) of binary liquid mixtures at 298.15 K. 

THF + 1,2,4-TMB THF+1,3,5-TMB

0.1 0.0371 29.11 24.81 -0.01 0.8727 0.1 0.0305 27.88 24.01 -0.01 0.8631
0.2 0.0698 29.00 24.62 -0.03 0.8737 0.2 0.0563 27.72 23.91 -0.03 0.8653
0.3 0.0947 28.88 24.44 -0.04 0.8748 0.35 0.0840 27.57 23.77 -0.04 0.8684
0.4 0.1125 28.73 24.26 -0.05 0.8758 0.4 0.0904 27.44 23.73 -0.05 0.8694
0.5 0.1224 28.53 24.08 -0.06 0.8769 0.5 0.0980 27.32 23.64 -0.06 0.8716
0.6 0.1228 28.29 23.91 -0.07 0.8779 0.6 0.0980 27.23 23.55 -0.07 0.8737
0.7 0.1128 28.01 23.74 -0.07 0.8789 0.7 0.0895 27.15 23.47 -0.06 0.8758
0.8 0.0901 27.68 23.58 -0.06 0.8800 0.8 0.0717 27.09 23.40 -0.06 0.8778
0.9 0.0530 27.34 23.43 -0.04 0.8810 0.9 0.0421 27.06 23.34 -0.04 0.8800

TCM+1,2,4-TMB TCM+ 1,3,5-TMB

0.05 0.0135 29.13 24.89 -0.004 0.9069 0.1 0.0858 27.77 23.944 -0.058 0.9340
0.1 0.0264 29.04 24.79 -0.009 0.9426 0.2 0.1570 27.53 23.791 -0.108 1.0066
0.2 0.0498 28.89 24.60 -0.016 1.0131 0.3 0.2114 27.29 23.648 -0.150 1.0774
0.3 0.0701 28.72 24.40 -0.024 1.0854 0.4 0.2503 27.10 23.511 -0.184 1.1506
0.4 0.0857 28.50 24.20 -0.029 1.1569 0.5 0.2697 26.99 23.389 -0.205 1.2223
0.6 0.0984 28.24 23.81 -0.035 1.2980 0.6 0.2685 26.91 23.281 -0.211 1.2943
0.7 0.0927 27.89 23.62 -0.034 1.3692 0.7 0.2443 26.86 23.191 -0.199 1.3661
0.8 0.0764 27.54 23.44 -0.028 1.4403 0.8 0.1951 26.83 23.124 -0.166 1.4371
0.9 0.0459 27.13 23.25 -0.017 1.5134 0.9 0.1120 26.81 23.084 -0.099 1.5124

DMSO + 1,2,4-TMB DMSO+ 1,3,5-TMB

0.1 -0.0508 28.48 21.22 -4.735 0.8942 0.1 -0.0610 27.30 25.031 -0.146 0.8850
0.2 -0.0926 28.77 21.90 -5.014 0.9166 0.2 -0.1087 26.92 25.926 -0.261 0.9076
0.3 -0.1251 28.81 22.61 -5.272 0.9390 0.3 -0.1486 26.70 26.919 -0.359 0.9320
0.4 -0.1472 29.10 23.32 -5.503 0.9611 0.4 -0.1743 27.41 27.885 -0.423 0.9551
0.5 -0.1584 29.46 24.09 -5.710 0.9838 0.5 -0.1871 28.40 28.888 -0.457 0.9783
0.6 -0.1570 29.34 24.88 -5.877 1.0062 0.6 -0.1854 30.09 29.941 -0.456 1.0018
0.7 -0.1423 29.35 25.70 -5.998 1.0282 0.7 -0.1679 32.05 31.016 -0.416 1.0250
0.8 -0.1124 30.04 26.59 -6.067 1.0506 0.8 -0.1320 34.77 32.164 -0.330 1.0487
0.9 -0.0646 35.71 27.57 -6.066 1.0734 0.9 -0.0770 37.92 33.342 -0.195 1.0720

x1  VE /ccmol-1 σ(exp) σm(thr) δσ/mNm-1 ρm /g.cm-3 x1  VE /ccmol-1 σ(exp) σm(thr) δσ/mNm-1 ρm /g.cm-3

x1  VE /ccmol-1 σ(exp) σm(thr) δσ/mNm-1 ρm /g.cm-3 x1  VE /ccmol-1 σ(exp) σm(thr) δσ/mNm-1 ρm /g.cm-3

x1  VE /ccmol-1 σ(exp) σm(thr) δσ/mNm-1 ρm /g.cm-3 x1  VE /ccmol-1 σ(exp) σm(thr) δσ/mNm-1 ρm /g.cm-3

 



Figure :Variation of Excess molar Volume (VE) with mole fraction(X1) 
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Abstract 

Due to the wave nature of particles, density of an ideal gas is actually not homogenous even at thermodynamic 

equilibrium. Inhomogeneous region occurs near to the domain boundaries and it is called quantum boundary layer, 

QBL. Thickness of QBL is in the order of mean de Broglie wavelength of particles, λ . Therefore inhomogeneity 

becomes important for the gases confined in nano structures although it is totally negligible in macro ones. The 

existence of QBL changes the thermodynamic behavior of gases considerably in nano scale. In this study, density 

distributions of ideal Maxwell, Fermi and Bose gases at thermodynamic equilibrium are examined by considering the 

wave nature of particles. Density profiles of Fermi and Bose are analyzed under quantum degeneracy conditions, 

namely low temperature and/or high density conditions. It is seen that there is a density oscillation in a degenerate 

Fermi gas. The magnitude of oscillations decreases with increasing distance to the boundaries and a flat distribution 

is recovered in the inner regions of the domain. In a degenerate Bose gas, QBL occupies the entire domain and there 

is no flat region in density distribution. 

 

1. Introduction 

In nano scale, thermodynamic behaviors of gases are considerably different than those in macro scale. The wave 

nature of gas particles causes some new effects which can be used to design and produce completely new cycles 

and devices. Design and fabrication of thermodynamic gas cycles in nano scale will soon be possible since today’s 

technology makes the production of the mechanical structures in nano scale possible [1-4]. Consequently, 

quantum effects on thermodynamic behaviors of gases constitute an interesting research subject [5-14]. 

 

For an ideal gas consisting of � particles confined in a domain of volume V, classical thermodynamics predicts a 

homogenous density distribution in an equilibrium state and the density is given by V�ncl = . This result is 

actually based on the classical probability density, which considers the particle nature of gas atoms. The classical 

probability density is a homogenous quantity and it is equal to 1/V. Therefore, the density is simply �/V in case of a 

particle representation of gas atoms. If the wave nature of gas atoms is considered, however, the probability density is 

given by the square of the absolute value of eigenfunction (wavefunction) the Schrödinger equation for a particle in 

quantum state r, ( ) 2xrψ . Therefore, the particle density of an ideal gas in thermodynamic equilibrium is expressed 

more precisely as follows, 
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where rn  is the density of particles in a specific quantum state r, rε  is the energy eigenvalue of particles, kb is the 

Boltzmann’s constant, T is temperature, µ is the chemical potential, rψ  is the eigenfunction of the single particle 

Schrödinger equation for a quantum state r and x is the position vector. Plus (mines) sign is used for a Fermi 

(Bose) gas. Domain integration of density equals to the total number of particles � in the domain. Since the 

domain integration of ( ) 2xrψ  is always equal to unity, dimensionless density can be defined by using Eq.(1) as 
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Right hand side of Eq.(2) represents the ratio of ensemble average of quantum probability to that of the classical 

one. In other words, it is the dimensionless ensemble average of quantum probability. For high temperature and/or 

low density conditions, quantum distributions go to Maxwell-Boltzmann distribution and Eq.(2) simplifies as 
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To calculate the dimensionless local density given by Eqs.(2) and (3), energy eigenvalues and eigenfunctions of a 

single particle Schrödinger equation are need to be known and the Poisson summation formula has to be used to 

calculate the summations precisely. Therefore it is necessary to solve the single particle Schrödinger equation by 

considering the boundary conditions of the domain. The exact analytical solutions for both eigenvalues and 

eigenfunctions are possible only for a rectangular domain. 

 

In a recent study [5], density distribution of an ideal Maxwell gas, Eq.(3), has been analytically calculated for a 

rectangular domain. It has been shown that the density of an ideal Maxwellian gas confined in a rectangular 

domain is not homogeneous even in thermodynamic equilibrium and there is a boundary layer in which the 

density goes to zero. The thickness of this layer is in the order of mean de Broglie wave length and the layer has 

been called quantum boundary layer (QBL) since its thickness goes to zero when the Planck’s constant goes to 

zero, 0→h . In the study here, density distributions of Fermi and Bose given by Eq.(2) are analyzed under quantum 

degeneracy conditions, namely low temperature and/or high density conditions. The results are compared with that of 

the ideal Maxwell gas. 

 

2. Density distributions of ideal Fermi and Bose gases in thermodynamic equilibrium 

2He
3
 and 2He

4
 gases are considered here as ideal Fermi and Bose gases respectively. They are assumed to be confined in a 

domain bounded by an infinite potential, which represents the non penetrable boundaries. For a particle confined in 

an arbitrary domain bounded by an infinite potential, stationary Schrödinger equation can be written as 

( ) ( ) 022 =+∇ xx kk k ψψ  in D, 0
D
=

∂kψ  (4) 

where D represents the bounded domain of an arbitrary shape, hrmk ε2=  is the wave number. To make the 

results independent from the length units, it is necessary to define the problem in a dimensionless spatial coordinates. 

Therefore, Eq.(2) is written in a dimensionless form by using a length scale L*  as follows 

( )

( )

∑

∑












−




















−









=

k

k

k

Tk
k

V

Tk
k

n

~

b

2

2

~

b

2

2

2

~

1
~

exp

1
~
1

1
~

exp

~

~~

m

m

µ
π
α

µ
π
α

ψ x

x  (5) 

where 3

*

~
LVV = , *

~
kLk = , *LLc=α , *

~ Lxx = , Lc is one half of the most probable de Broglie wavelength given 

by 222 Tbc TmkhL λπ== . L* can be any length. In this study, it is simply chosen as cLL 5* =  for the calculations, 

which means 2.0=α . 

 

For one dimensional domain bounded by infinite potential, both eigenvalues and eigenfunctions of Eq.(4) can 

analytically be obtained. If they are used in Eq.(5) and the summations are calculated precisely, the density 

distributions of degenerate Fermi and Bose gases confined in one dimensional domain are obtained as seen in figure 

1. Density distribution of a Maxwell gas is also given to compare the results. It is seen that the particles stand away 

from the boundaries and density distribution of even an ideal gas is not homogenous. There is a boundary layer in 

which the density goes to zero. Thickness of this layer takes the largest value for Bose gas and the smallest value for 

Fermi gas. Wave nature of particles keeps the gas away from the boundaries and increases the density of inner region 

of the domain. Furthermore, Friedel-like oscillations appear in case of degenerate Fermi gas.  

 

For a two dimensional rectangular domain, analytical solution of Eq.(4) is again possible and the results are shown in 

figure 2 and figure 3 for Fermi and Bose gases respectively. In figure 2, it is seen that the superposition of Friedel-

like oscillations in each direction causes peaks at the corners. The results of Fermi and Bose gases are obtained for 

10K, 1.000 atm and 10K, 80 atm respectively. 
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Figure 1. Density distributions of ideal Maxwellian, Fermi and Bose gases in 1D domain. Tkbµ=Λ  is chosen as 

5=Λ  for Fermi gas and 01.0−=Λ  for Bose gas while α is always considered as 0.2. 

 

 

 
Figure 2. Friedel-like density oscillations in a degenerate Fermi gas, 2He

3
, at 10K and 1.000 atm. 

 

 

 

 
Figure 3. Density distribution of a degenerate Bose gas, 2He

4
, at 10K and 80 atm. 
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3. Conclusion 

 

Due to wave nature of particles, it is seen that there is boundary layer which makes density of a gas inhomogeneous 

even in thermodynamic equilibrium. Because of this layer, density increases in the rest part of the domain. In a 

degenerate Fermi gas, density even oscillates. On the other hand, oscillations are damped and a flat distribution 

occurs in the inner parts of the domain. In a degenerate Bose gas, density becomes completely inhomogeneous in the 

entire domain. These results show that the thermodynamic state functions, which depend on density, become 

complicated in nano scale. Therefore, thermodynamic behaviors of gases confined in nano structures are different 

those in macro ones. These interesting results observed in gas density can allow to design completely new devices 

based on these unusual behaviors. 
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Abstract 
We develop a unified conceptual and mathematical structure for the use of concepts and tools of 

equilibrium thermodynamics in neoclassical microeconomics and vice versa, based on the analogy between 

entropy in thermodynamics and utility in consumer theory. With this analogy, we have obtained the 

following results in microeconomic theory: (1) the definition of irreversibility in economic behavior; (2) 

the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by 

the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities 

proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a 

stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le 

Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate 

points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-

dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic 

potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the 

generalization of the Clapeyron equation. 
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Abstract 

The quantification of metabolic activity is usually done with mass or energy fluxes, e.g. dioxygen 

consumption or heat flux, that are not universal measures of metabolic activity. We propose the use of 

entropy production as a universal quantifier of metabolic activity, given its association with energy 

transformation, in order to unify the measurability and comparability of all types of metabolism. 

For aerobic organisms, entropy production is correlated with the dissipated heat flux because the net 

entropy content of the mass fluxes is negligible. However, in general, entropy production is not directly 

measurable. We obtain it with the use of a general theory for organisms based on physical and chemical 

principles, the Dynamic Energy Budget theory, that provides quantification for biochemical activity at the 

individual level and across species. 

 
Conceptually, metabolism is an aggregation of all reactions associated with a given organism, unifying 

analysis for all types of organisms and the way they relate to mass and energy flows. The problem of 

metabolic measurement is one of the most deep and recurrent questions in biology, given the variety of 

scales and types of metabolism. How can a deep sea chemolithoautotroph with a hankering for sulphur be 

compared to a plankton-sweeping dioxygen-using whale? 

There have been two answers to this question: either quantify metabolism as proportional a) to a mass flux, 

such as dioxygen or b) to released heat via direct calorimetry. Although useful, these measurements are not 

universal. The dioxygen flux is not a universal measurement because some organisms do not use dioxygen 

consumptively, for example anaerobic bacteria. The heat flux is a misleading measurement for organisms 

that have both endothermic and exothermic chemical reactions because a given amount of dissipated heat 

cannot be linked unequivocally to a given metabolic activity. Autotrophic metabolisms also cannot be 

quantified by calorimetry, because non-absorbed light contributes towards generated heat. 

In order to be universal, a given quantifier has to be applicable to all metabolisms and increase or decrease 

monotonically with the level of biochemical activity. We propose entropy production as a quantifier for 

metabolism. It is a universal measurement because all organisms are subject to the second law of 

thermodynamics, implying that all organisms produce entropy in their metabolic functioning and that this 

entropy production is always positive, being additive over all processes. 

In order to quantify entropy production we use the Dynamic Energy Budget (DEB) theory and recent 

results obtained for the thermodynamics of organisms. DEB theory is a biological non-species-specific 

theory that aims to capture the quantitative aspects of the organization of metabolism at the organism level. 

This theory presents disaggregated mass and energy fluxes as functions of model parameters and state 

variables. Model parameters have to be obtained indirectly by statistically analyzing data but gain 

mechanistic relevance within this theoretical structure. Hence, quantities such as the dioxygen flux, the 

dissipated heat flux and entropy production can be mechanistically derived and explained. 

Another strong feature of this theory is that differences between species can be reduced to differences in 

parameter values that are roughly predicted by DEB theory to be a function of the species maximum size, 

allowing for inter-species comparisons. 
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1. Summary

One of the fundamental problems in computer science is to determine whether the complexity classes P and NP are
in fact distinct from each other.  In this paper, I offer an approach to this problem that involves recasting the
essential computer science ideas into the language of physics, specifically that of thermodynamics.  Specifically, the
work described below suggests that the NP problems, the apparently intractable ones that take exponentially long to
solve, correspond to systems that must undergo tunneling to reach their respective ground states.  While this work is
still speculative in many ways, it is fleshed out sufficiently to offer not only a potential road map for addressing the
distinction between P and NP problems, but also to contribute new ideas for thinking about computational
complexity, by invoking the ideas of physics.

2. Key Highlights of Computational Complexity

To understand this work, it is important to have some understanding of the necessary issues in computational
complexity, before turning to the use of thermodynamics.  A detailed discussion of these ideas is found in [1].

We focus here on measures of computational complexity based on how the time it takes to solve a problem depends
on the size of the input.  A typical problem is the Traveling Merchant Problem (more familiarly, the Traveling
Salesman Problem), which entails, roughly speaking, finding the shortest path visiting N arbitrarily specified points
in the plane or, to put it in its NP-complete form, to determine whether there is a path visiting all the cities of length
less than a given length L.

Consider an algorithm A to solve some problem P.  Let a given instance of the problem (e.g., in our example, a
specific collection of points) be denoted I. The amount of information needed to specify the instance I is denoted |I|
(e.g., in our example, the number of coordinates needed to specify the cities).  We denote the time it takes algorithm
A to solve instance I of problem P by τ

A
(I).  We then define

T
A

(N) = Max

I : |I|=N

 τ
A

 (I)

This quantity uses the worst case scenario (i.e., the instance that takes the longest time to solve) to provide a
measure of the efficacy of the algorithm A in solving the problem P.

We can now distinguish the complexity of the problem P overall by distinguishing two generic cases:

Case 1: If there exists an algorithm A such that T
A

(N) has a polynomial dependence on N for large

N, the problem is said to be in the class P of tractable problems.

Case 2: If there exists no algorithm A such that T
A

(N) has a polynomial dependence on N for

large N, the problem is said to be in the class of intractable problems.
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There are, of course, problems known to be in the class P.  There are other problems for which the best known
algorithms are exponential in time.  Among these, there is the class of those problems for which a potential solution
can be checked in polynomial time; these for the class NP of computational problems.  It is an open question as to
whether this is because those problems are genuinely intractable (P≠NP) or because the best algorithms are
polynomial in time but have not yet been found (in which case P=NP).  Within the class NP are the NP-complete
problems; a rigorous proof that one of these problems can or cannot be solved in polynomial time is sufficient to
determine whether the entire classes P and NP are equal or not.

3. Thermodynamics as a Framework for Understanding Computational Complexity

In this paper, I propose to understand the distinction between P and NP by recasting the computational problem in
the language of statistical mechanics.  Early versions of these ideas were presented in [2].  A specific instance in
which the tools of physics can be used to draw a distinction between P and NP problems appears in [3].

Let us imagine solving some problem, such as the Traveling Merchant Problem, which can be phrased as a
minimization problem.  Finding the minimal length path through a list of points in the plane is, as far as is known, an
intractable problem.  (Strictly speaking, this problem is not an NP  problem, as it is not a decision problem, but it has
a closely related NP-complete version, namely to determine whether there is a path of length less than a given length
L [1].  If the minimization problem can be solved in polynomial time, so can the decision problem; if the decision
problem requires exponential time, so does the minization problem.)  We focus on a minimization problem rather
than a decision problem as this affords the clearest connection to thermodynamics.  We use Q to denote the quantity
to be minimized.

Suppose we have some algorithm A for solving this problem. The role of the algorithm is, over time, to take us from
a situation in which any path is a possible solution, to one in which  we have found the minimum path.  The
algorithm A thus can be understood as a time evolution operator, evolving the system from a situation in which a
multitude of states is possible to a situation in which only one — the state of minimal Q — is possible.  Certainly,
one way to understand the process is to imagine one starts with a prospective path, and then the algorithm gradually
acts on this path, changing the sequence of cities, to turn it into the optimal path.  For the purposes of this abstract,
we confine ourselves to such algorithms.  (The analogous problem in one-dimension is to alphabetize a list of words,
something which can easily be done in polynomial time.)  In this framework, then, the algorithm A can be
understood as the time evolution operator acting on the space of states, where each state corresponds to a particular
path or sequence of cities.  Thus the algorithm A plays the role of the Hamiltonian.

The algorithm A also plays another role.  One path s is considered to be adjacent to another path s´ if the algorithm
will convert path s to path s´ without an intermediate path being generated.  (For example, an algorithm might search
the space of states by interchanging two cities to turn one path into another.)  Thus the algorithm A determines
which configurations are adjacent to which other configurations, and thus how far apart any two configurations are.
Thus A also serves to define the geometry on the space of configurations, implicitly placing a metric on this space.

The algorithm then must narrow down the possibilities so as to minimize the quantity Q.  Consequently,  Q plays the
role of the free energy in a thermodynamic system.  Of course, in thermodynamics, the Hamiltonian underlies the
time evolution, but the Hamiltonian is hidden, and so we use thermodynamics rather than classical mechanics to
analyze the system.

This insight from physics is the key insight to introduce to the study of computational complexity.  Since the study
of computational complexity involves examining the time behavior of algorithms for large |I|, we find ourselves in
the computational analogue of the thermodynamic limit.  With this in mind, we conjecture the following:

Conjecture: An algorithm A takes exponentially long to minimize a quantity Q if the function Q on the space of
configurations has, with the metric determined by A, a local maximum, so that for at least some trial initial states, a
Q-barrier must be overcome to reach the state of minimal Q.
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The underlying concept here is that for the system reach the state of minimal Q, a barrier must be overcome.  If the
conjecture is true, it means that rather than understanding this process in terms of a step-like Hamiltonian evolution,
we can rephrase the time evolution of algorithm A in the thermodynamic language of tunneling [4].

What does this mean for computational complexity, and what is necessary for this approach to work?

For computational complexity, this approach offers the following potential insights.  A problem in the class P (such
as alphabetizing a list of words) is one in which there is an algorithm A that places a metric on the space of states
such that the function Q has no local maxima, and such that there is a path connecting each configuration to the
optimal configuration that is monotonically decreasing in Q.

If a problem is such that for every algorithm A there are instances I of the problem for which there are local maxima
in Q that must be overcome for the optimal configuration to be reached, then the problem will take at least
exponentially long to solve, as the system will have to go undergo tunneling to reach the optimal state.

This reframing of these key concepts of computational complexity in the language of thermodynamics then allows
the possible use of tools and results from physics to address the distinction between the classes P and NP.

Note that we have phrased things in terms of a particular kind of algorithm, one that, like a sorting algorithm, effects
a time evolution in the space of configurations.  While this makes the contact with physics clearer, the full
application of these ideas requires that these ideas be generalized.  The way to do this is to recognize that any
algorithm is a time evolution operator acting on the states of the computer on which the algorithm is running.
Raising the argument to this level of abstraction would provide the context for applying the above approach in a
general context.

4. Outlook and Related Insights

In this section, I offer some varied insights that are germane to further progress with this approach.

Let us suppose, as most do, that P≠NP.  In the framework I have proposed, it would be necessary to show that every
algorithm A leaves us with a metric, in at least some cases, that must have a local maximum.  To do so, it would of
course suffice to do so for a single NP-complete problem; I will have a bit more to say about the choice of the
problem below.  In order to show that a local maximum is unavoidable, a likely mathematical tool is Morse Theory,
which can offer results as to whether extrema of various kinds can be eliminated under deformations of the
parameters of a problem.

One might wonder how the transition from classical mechanics to thermodynamics/statistical mechanics can be
achieved in the computational case.  That is, the behavior of an algorithm looks very much like Hamiltonian time
evolution, but how do we make the transition to the thermodynamic description for the computational problems?
Here, there are some open questions but also some useful insights.

The fact that we are looking at the time behavior of algorithms for large instances of the problem brings us to the
thermodynamic limit, and allows us to replace the discrete time evolution of the algorithm with the continuous time
evolution of a something like a Hamiltonian.  The fact that we a priori any path is a possible solution may play a
role analogous to that of the ergodic hypothesis, but that is at the moment hard to establish.

Perhaps the biggest open question is what plays the role of energy in the computational problem.  The appearance of
exponential Boltzmann factors, which ultimately underlie the exponential time behavior required for tunneling
processes, rests on conservation of energy and contact with a reservoir of some kind [4].  It seems that the analogy
requires a conservation law in the quantity Q being minimized or some close related quantity, but it is not yet clear
how to achieve this.  An alternative possibility is that, just as information loss has to be associated with an increase
in physical entropy, the tunneling required in intractable problems and algorithms that take exponential time may be
associated with overcoming a barrier in physical energy.
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A deeper question is how a deterministic system can be understood in a probabilistic language.  This, of course, is a
problem already apparent in the physical context (it is here that the ergodic hypothesis plays a critical role in the
physical case), but if we are to apply thermodynamic reasoning to computational complexity, we must establish that
a probabilistic description is accurate here, too.  Of course, even in the physical context, this transition from
deterministic to probabilistic description is not rigorously established.  How might we do so?

The key insight here is that ignorance and stochasticity should be empirically indistinguishable from each other.
Thus, before the algorithm has generated information, the behavior of the algorithm should, with regard to that
information, behave in a way that is indistinguishable from stochastic.  In this way, the identification of the
computational problem with thermodynamic calculations should be possible.  This insight may also offer a new to
think about the transition from classical to statistical mechanics.

As mentioned above, it is possible to focus on particular problems (the NP-complete problems) and gain results that
are more generally relevant.  One useful exercise is to distinguish the Traveling Merchant Problem in two-
dimensions from its one-dimensional version.  Suppose we have an instance of the problem and gradually move one
or more of the cities around to obtain a new instance; when will the optimal path change?  In the one-dimensional
case, this is easy to identify: whenever one city passes through another, and their locations overlap.  In the two-
dimensional case, however, there is no local indicator of when the configuration has changed sufficiently for there to
be a new optimal path.  This distinction is probably a key to understanding why tunneling is unavoidable in the two-
dimensional case but not the one-dimensional case.

5. Final Observations

The approach suggested in this paper offers many insights, but still possesses significant gaps.  However, the
framework offers a compelling case that the ideas of thermodynamics and the relationship between classical and
statistical mechanics can be fruitfully applied to notions of computational complexity.  At best, the conjecture put
forward here that intractability and tunneling are equivalent processes will be verified, and the question of whether P
and NP  are distinct will be resolved.  But even without this, thermodynamics offers a new language and set of tools
for analyzing computational complexity.
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1Communications & Digital Signal Proc. Center, Northeastern University, Boston, MA 02115, USA
2Dept. of Fluid Dynamics and Engineering Acoustics, Berlin Institute of Technology, D-10623 Berlin, Germany
3Inst. of Combustion Engines and Transportation, Poznań University of Technology, PL 60-965 Poznań, Poland
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Abstract

Galerkin models of fluid flow systems are focused on a limited range of spatio-temporal scales of dominant
coherent structures. Neglecting the slow dynamics of largestructures, and the fast dynamics of small scales and
turbulence, have been shown to be able to severely distort the dynamics predicted by the model. Here we outline
a cohesive framework that integrates into the Galerkin model least order representations of these neglected scales:
Mean field models account for slow variations in the base flow,and of entailed linear stability corrections. And
a recent framework of finite time thermodynamics in Galerkinsystems is used as a basis for the representation of
effects of smaller structures, in the aggregate. The proposed approach is illustrated by the cylinder wake benchmark.

1 Introduction
Model reduction is pursued in investigations of fluid flow systems, both as a means to encapsulate key dynamic
properties of the system, and as an indispensable tool for model-based design of feedback control mechanisms. A
mature and sophisticated theory of model reduction and system identification is available for linear systems [1,2] and
has been successfully applied to linearized flow models [3–5]. Yet despite very substantial efforts over many decades,
results available today are rather restrictive and are either limited to local models (based on extensions of the linear
theory) or to well defined classes of systems [6–9]. The difficulties to attain the generality, power and mathematical
rigor of the linear theory therefore led to the evolution of alternative methods that rely heavily on physical insight
and an accumulated experience. The inherent nonlinearity and complexity of the Navier-Stokes equation (NSE), the
trusted model in fluid dynamics, is a case in point, leading tothe massive use of Galerkin models, and among those,
of empiricalproper orthogonal decomposition(POD) models [10].

By design, Galerkin and spectral models of fluid flow systems are capable and intended to resolve a selected range
of spatial and temporal scales. Ideally, these modes and scales represent the dominant coherent flow structures, in
which one is interested, and the Galerkin approximation resolves most of the kinetic energy of the unsteadiness, in
these structures. Yet, as was elaborated in [11] and demonstrated repeatedly, even when the kinematic approximation
is excellent, neglecting both longer and shorter scales maylead to severe distortions in the dynamic predictions by
the Galerkin model: The truncation of small scales, hence ofthe energy cascade to turbulent dissipation may lead to
over-predicted states. Slowly varying larger flow structures represent mean field corrections. They are effected by
time variations in the Reynolds stress and, in turn, modulate the linear growth rate of unsteady fluctuations. Their
suppression too may lead to an unfortunate combination of attractor. Both these shortcomings are exacerbated with the
reductions of the Galerkin model order. This article proposes a cohesive approach to address both these shortcomings.
That approach integrates into a unified framework two previously introduced tools: Afinite time thermodynamics
(FTT) model [12, 13] is used to capture the effect of slow timevariations of mean modal energies in small length
and time scales. Tracing to the fundamentals of mean field theory [14], shift mode(s)[15,16] represent the slow time
variations of large structures and their effects on the linear term in the original Galerkin model. The added models are
based on physical first principles and therefore aim to capture a physically meaningful tradeoff between model order
and resolution level. In particular, unlike unsteady Reynolds-averaged Navier-Stokes models or Smagorinsky-type
reductions of the Navier-Stokes equation, the reduced order model respects mathematically rigorous momentum and
energy balance equations.

The resulting theory demonstrates how both the aggregated representations of the neglected long and short time
and length scales provide a theoretically solid expansion of Landau’s original amplitude20equations [17]. It is illus-
trated with the cylinder wake benchmark.
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2 A generalized framework for Galerkin models
The Standard Galerkin Model for Dominant Fluctuations. The starting point is an affine approximation of the
velocity fieldu(x, t) in terms of a base flowu0(x) and an orthonormal set of modes{ui(x)}N

i=1
:

u(x, t) = u0(x) +

N
X

i=1

ai(t) ui(x). (1)

The POD modes [10] maximize the norm resolution for the budgeted model orderN . The standard Galerkin system
is an ordinary differential equation, formed by the projection of Navier-Stokes equations on the approximation (1):

ȧi = ci +

N
X

i=1

cijaj +

N
X

i,j=1

cijkaj ak, i = 1, . . . , N (2)

Postulating a completion of the expansion set, we shall nextview (1)-(2) as exact and elaborate on subclasses of
modes and the sought physics based order reduction in (2).

A Galerkin-Reynolds Decomposition.In complete analogy to the full flow field, the statesai of (2) are associated
with a slowly varyingmean and fluctuation energy (TKE):

ai = mi + a′
i, mi := 〈ai〉 , Ei :=

1

2

D

`

a′
i

´

2
E

. (3)

Finite Time Thermodynamics. The constitutive FTT equations formi andEi are obtained from the modal pendants
of the Reynolds and TKE equations in the Galerkin space. The unknown second and third moments are expressed in
terms ofEi by energetic closure assumptions [13]. The resulting2N equations for2N unknowns read

0 = ci +
N

X

j=1

cij mj +
N

X

j,k=1

cijk mj mk +
N

X

j=1

2 (cijj + ciji) Ej , (4a)

Ėi = Qi + Ti, Qi = qi Ei, Ti =
N

X

j,k=1

Tijk = α χijk

p

Ei Ej Ek

»

1 −
3Ei

Ei + Ej + Ek

–

. (4b)

A detailed description and discussion of the FTT equations are detailed in the original paper [13]. Highlights include
the distinction of states as either energy donors and recipients, depending on their linear growth or decay rates, and
the existence of at least one of each, the postulation that, on average, the lossless triadic terms conduct energy flows
from high-to low energy states, and that participating Galerkin states are assumed uncorrelated.

The fixed point of (4) corresponds to the steady or the post-transient Navier-Stokes solution. Numerically, the
stability properties of the Navier-Stokes solution are observed to transfer to the FTT equations. Thus, plain forward
integration of (4) eventually converges against the non-trivial fixed point associated with the unsteady attractor.

The standard representation (1)-(2) now will give way to three types of states and associated dynamics, using
the conceptual framework of (3). The index set is partitioned as{1, . . . , N} = IA ∪ IB ∩ IC and their governing
equations are:
A-Modes,i ∈ IA, dominant fluctuations:

ȧi = ci +
N

X

j=1

cij aj +
N

X

j,k=1

cijk aj ak + κi (ai − mi), (5a)

ṁi =
1

τ
[ai − mi] , (5b)

Ėi =
1

τ

ˆ

(ai − mi)
2 /2 − Ei

˜

, where 2 κi Ei =
X

j∨k 6∈IA

Tijk. (5c)

B-modes,i ∈ IB , capturing slow variations in the mean flow:

0 = ci +

N
X

j=1

cij mj +

N
X

j,k=1

cijk mj mk +

N
X

j=1

2 (cijj + ciji) Ej , (6a)

mi = ai, (6b)

Ei = 0. (6c)
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C-modes,i ∈ IC , turbulence represented by slowly varying energy levels:

Ėi = Qi + Ti, (7a)

mi = 0. (7b)

ai = 0. (7c)

Of these three types, energy producing modes are all of type A. Turbulence modes are energy dissipating and effect
the dynamics of A-modes only through the time averaged energy consumption (the last term on the right hand side
of (5a)). B-type, shift modes are driven by by quadratic terms, representing the Reynolds stress in the Galerkin sys-
tem [15, 16]. In turn, B-modes adjust growth rates of A-modesfrom instability at the steady solution, to a marginal
stability over an attractor.

A Unified Framework for Model Reduction. C-modes sacrifice phase-information on fast fluctuations and retain
only pertinent energy levels. Additional compression is achieved as a single C-mode is used to capture multi-modal
energy. Likewise, the slow mean field variations are effectively captured by a single or few shift modes.

The details of this well studied benchmark that are used herecan be found in [15]. The unstable steady solution
us(x) is chosen as base flow. The fluctuations are resolved with the first 8 POD modes of the periodic flowui,
i = 1, . . . , 8. The mean-flow deformation is resolved with a shift-mode as 9th modeu9. All 9 modes constitute an
orthonormal basis and the Galerkin expansion reads. As shown in [13], the FTT model, in which all 8 POD modes are
treated as C-modes reproduces essentially the same energy levels as those produced by the standard Galerkin model,
where all are treated as standard A-modes (see Fig. 1).

1 2 3 4 5 6 8i

-3

-2

-1

0

1

log Ei 

Figure 1: Modal energy distributionEi, i = 1, . . . , 8 of the Navier-Stokes attractor (•), of the Galerkin system (◦),
of the system with A-modes (i ≤ 8 and one B-mode (i = 9) ( ), of the system with C-modes (i ≤ 8) and one B-mode)
(2), and of the system with A-modes (i ≤ 2), B-modes (i = 3 . . . 8) and one C-mode (i = 9) (∗).

3 Conclcusions and outlook
We have proposed a frame-work for reduction of a dynamic system with energy-preserving quadratic nonlinearity.
Such dynamic systems arise, for instance, from the traditional Galerkin method or spectral method of incompressible
fluid flow. The goal of system reduction is to reduce the dimension of the state space with associated time propagator
(dynamics). This implies to eliminate dynamic degrees of freedoms or ordinary differential equations (ODE) by
modeling their effect on the remaining dynamical system. The ODEs of slow modes associated with base-flow
variations are replaced by algebraic equations defining a manifold in Galerkin space. The ODEs of fast modes
associated with fine-scale fluctuations are modeled statistically by their energy distribution. The dynamics of the
remaining dominant modes incorporates the effect of the slow and fast modes as inertial manifolds and energy flow
terms.

Key enabler for a mathematically rigorous system reductionis a finite-time thermodynamic (FTT) formalism,
representing a cumulant closure for the first and second moments. FTT yields approximate versions of the modal
Reynolds and TKE equations. FTT allows to derive the interactions between slow, dominant and fast modes without
heuristic assumptions beyond the validated FTT closure. The ensemble averaged equations for slow, dominant and
fast modes including the interaction terms coincide with the FTT equations. For instance, the fast unresolved modes
change the inertial manifolds and absorb energy from the dominant modes in a well-defined manner. Furthermore, the
slow modes change the dynamics and the energy supplies of thefast modes. In short, FTT offers a design principle
for interaction terms across resolved and unresolved flow components.
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The proposed system reduction method has been applied to a 9-dimensional empirical wake model. The full
system mimics a ’DNS’, while the considered reduced systemsinclude a RANS-type version with a completely
statistical description and an LES-type version with a deterministic resolution of the first harmonics and stochastic
model for the higher harmonics. The numerical accuracy of this proof-of-concept study are encouraging.

The proposed FTT-based system reduction accommodates mean-field models, inertial manifolds, a derivation of
the eddy-viscosity term and the truncated Euler solution exhibiting thermal equilibrium. Thus, FTT and the proposed
system reduction strategy offer a toolkit which reproducescurrent models of nonlinear dynamics and turbulence
theory and allows to construct myriad of new models of potential relevance. The authors actively pursue the derivation
of an alternative for unsteady RANS and VLES following the sketched path employing physical Galerkin models.
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1. Introduction 
 
Thermodynamics is considered a very difficult subject, expressed with so many letters and differentials. It 
becomes much simpler if one accepts the circuit thinking of electrical engineering. It is the purpose of this article 
to develop systematically the circuit and network thinking in thermodynamics and to go on from there. Instead of 
electric circuit elements, we use the Bondgraph (BG) formalism and we develop the BG symbols as needed. A 
pre-knowledge of BG is helpful, but not necessary to understand the definition of entropy in this article. 
 
Here we shall develop the circuit thinking for thermodynamics and built the formalism from there. Circuit 
thinking was firstly developed in electrical engineering and for thermodynamics only slight modifications are 
required, as we shall develop. 
 
The main point is to consider entropy as a substance, indeed as thermal charge. As such it has many similarities 
with electric charge, but also some differences. Entropy flow is connected to the transfer of heat power by the so- 
called Carnot’s equation 
 
 

€ 

˙ Q = T ˙ S or ˙ S = ˙ Q T  
 

To repeat, entropy flow is the more familiar heat flow divided by absolute temperature. 
 
Entropy flow is very similar to the transmission of electric power, or simply electric conduction, which has the 
equation 
 

€ 

˙ E = u ˙ q = ui 
 

With entropy as thermal charge, one can built circuits of thermodynamic installations, a little like electric 
circuits, but with slightly different properties. Here it is convenient to use the BG formalism and to show the 
difference to electric circuits by special BG elements. We will describe them, when we built the thermodynamic 
circuits. 
 
 
2. Properties of entropy 
 
Contrary to electric charge, which is always conserved is best to imagine entropy as a kind of substance, 
connected to heat flow by Carnot’s equation, and produced by all kinds of frictions or irreversibilities. Under 
friction we understand not only mechanical and electric friction, but also heat conduction under finite 
temperature difference.  
 
Further mechanisms to generate entropy are unopposed mixing of fluids, and also the resistance in chemical 
reactions. They exist but are in practice not important enough to justify treatment here. We use the Bondgraph 
(BG) formalism here, where all frictions are R-elements. To indicate properly the entropy generation, the R-
element becomes saddled with a source element, becoming thus an RS-element. 
 
Important is that the single R-element is a power sink, but does not exist as such. It becomes a power conserving 
RS-element: all absorbed power in the R-part appears again as heat, or as entropy times absolute temperature. 
This is illustrated by Fig. 1, with the simple R-element at top and the power conserving RS-element at bottom: 
 



 2/4 

 
 

 
 

Fig. 1: Including thermics, the R element becomes an RS element. 
 
Let us repeat: a simple R-element does not exist and becomes a power conserving RS-element by including 
thermal effects in our BG. 
 
 
3. Thermodynamic circuits 
 
 

 
 
Fig. 2: Top: simple electric circuit with one resistor and two capacitors. Bottom: BG of this circuit. 
 
One can built circuits for simple electric installations as on Fig. 2 with a resistor between two capacitors. As long 
as the voltages in the capacitors are different, there will flow a current through the resistor and we have 
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dissipation. It will appear in the thermal domain, as new entropy times absolute temperature as indicated below. 
Dissipation is a power flow that is always positive out from the resistor, even if the voltage changes sign. This is 
well shown by the equation 
 

€ 

I = Ru and Dis =
u2

R
 

 
where one sees that the dissipation is always positive (even if the voltage u is negative). 

 

 
 

Fig. 3: BG for thermal conduction. Here the new entropy is injected to the C-element at lower temperature. 
 

Thermal conduction is quite similar to electric conduction, with the dissipation in a thermal RS-element. Only its 
dissipation is thrown as entropy flow into the C-element having the lower temperature on the right of Fig. 3. 
Again, thermal dissipation is always positive. These electric dissipation and heat conduction are the two main 
mechanisms of generating entropy. If it is not clear which C-element is at lower temperature, a switch element 
SW can be interposed between the dissipating RS-field and both 0-junctions near to the C-elements. Such an 
element is quite easy to realize on a computer. It is notable that entropy has a semi-conservation property: it can 
never be destroyed, but is generated “out of nothing” by all kind of irreversibilities. To remove entropy from our 
field of interest, it must be transported away. Ultimately is must be disposed in stellar space around the earth.  
 
Picture of Carnot cycle 

 

 
 

Fig. 4: BG of the famous Carnot cycle, where two adiabatics are interposed between the entropy spending and 
absorbing isothermals, one hot, the other cold. 
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The celebrated cycle of Carnot (1824) is represented in our formalism as follows: at left, we find a continuous 
flow source, driving a modulated transformer MTF, which converts the rotation into alternating movement in a 
cylinder. The working gas is contained in a 2-port C-field  -C- . The switch SW has 3 positions: 
 

1. connecting to the high temperature in SE1; 
2. connecting  to the low temperature in SE2; 
3. connecting to nothing, the so called adiabatics of Carnot. 

 
As Thoma has explained in [THOMA 2009], to interpose the 2 adiabatics between the isothermals was a great 
invention by Carnot. It avoids thermal short circuit when switching from high temperature to low temperature 
and vice versa. In practice, the Carnot cycle is not used because too much of the power gained in the expansion 
is needed to drive the compression. In other words, the power ratio, also called work ratio, is too small, 
especially if the working medium is an ideal gas. Therefore, historically one used a two phases working medium, 
water and steam, where the feeding pump with water used only negligible power. This is called the steam engine, 
with its heavy boiler, which dominated the world. Later, it was superseded by the more efficient internal 
combustion engine with its burning of gas inside the working cylinders. 
 
Origins of entropy and heat 
 
All tables of hot matter or water and steam give only incremental values, which are from a certain reference. In a 
water-steam mixture, one assigns the origin to water just at freezing as the most stable state and counts the 
values from there. Entropy is given only in incremental values by the formula 
 
 

€ 

S1 − S2 =
dQ
T∫ ≈

dQ1
T1∫ −

dQ2
T2∫

€ 

 

 
There is also the Nernst theorem which says that at zero temperature the entropy content of all matter is zero. We 
hold that this is only a theoretical law, and that entropy content, especially at low temperature, is unknown: we 
don’t know the modifications of structure at cryogenic temperatures. 

 
 

4. Conclusion 
 
We care at the end of our trip through classical thermodynamics, which is simple and beautiful, if we take 
entropy as something fundamental, as thermal charge. It has special conservation properties: it can be generated  
“out of nothing” by frictions but it can never be destroyed and has ultimately to be disposed of in the stellar 
space around the earth. The important point is that all tables are giving only increments and leave the question of 
absolute entropy undecided. It would be good to give more thought to the absolute values of entropy. 
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Stability conditions in thermodynamics could be considered as a statement based on the 
positivity of entropy production. Simultaneous processes accompanying by the entropy production are the 
sign of non-equilibrium systems. On the other hand in classical thermodynamics stability conditions are 
usually related to equilibrium states. Le Chatelier – Braun principle is one of the basic rules that 
determines the direction of the processes and also should be regarded to the statement resulting from both 
the law of entropy increasing and stability criteria. In classical thermodynamics the applications of Le 
Chatelier – Braun principle mostly concerned the shifting of equilibrium. Such applications of originally 
non-equilibrium results (stability conditions and Le Chatelier – Braun principle) to the equilibrium 
thermodynamic theory could be considered as some link (or bridge) between equilibrium and non-
equilibrium thermodynamics. In this paper we discuss some aspects of these basic thermodynamic 
statements.  

Firstly we consider the alternative approaches to stability criteria and Le Chatelier – Braun 
principle. New variants of formulations of these statements are proposed. For example the interconnection 
between non-conjugated thermodynamic parameters is discussed on the base of Le Chatelier – Braun 
principle. Respective thermodynamic relationships could be considered as a special case of theorems of 
moderation. Various transformations of the stability matrix are presented as variants of mathematical 
formulations of stability conditions. Particularly the transformations of stability matrix to diagonal form 
are discussed. In both cases (stability criteria and Le Chatelier – Braun principle) the approach of Gibbs 
and Prigogine – de Donde method are considered, also in comparison. Elements of axiomatic of 
thermodynamics (Caratheodory and Afanassjewa-Ehrenfest) had been involved in consideration too.     

Then we consider the general system of thermodynamic inequalities as a base of stability theory 
in equilibrium thermodynamics. The concept of affinity is used both for chemical and for phase 
processes. The possibility of the description of different types of physical-chemical processes on the base 
of generalized affinity is discussed. The illustration of the application of thermodynamic inequalities to 
various physical-chemical systems and processes will be presented. For example the problem of the 
shifting of phase and chemical equilibrium in the system under different external conditions is discussed.   

In conclusion we present some relationships that illustrate the possibility to use the criteria of 
stability of the equilibrium to characterise the non-equilibrium process. These relationships could be also 
considered as results from Le Chatelier – Braun principle. Inequalities for second derivatives of 
thermodynamic potentials give opportunity to compare the changes of thermodynamic parameters in 
equilibrium and non-equilibrium processes. Processes in homogeneous and heterogeneous systems are 
discussed. Particularly the processes accompanied by generation of new phases are considered. The 
interpretation of so-called jumps in the values of second derivatives of thermodynamic potentials is 
presented.  
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1 Introduction, Overview

It is our goal to isolate the truly important notions of entropy for statistical
physics. Until not that long ago, the one and only notion, classical entropy,
was the one rooted in works of Boltzmann and Gibbs and consistent with
the later theory developed by Shannon. A multitude of other notions have
been suggested by mathematicians since the fifties. In 1971 the first sug-
gestion of new entropies for statistical physics were presented by Lindhard
and Nielsen. This was met by little interest. It was not until 1988 when
Tsallis, unaware of previous research, pointed to the same entropy mea-
sures, that the development gained momentum. Since then, more than 2500
publications have studied the new entropies now bearing Tsallis’ name and
also referred to as q-entropies with q a real parameter. Classical entropy is
obtained when q = 1.

Tsallis’ success in promoting the q-entropies seems to be due to his direct
and pragmatic approach, as well as the demonstration by Tsallis and follow-
ers that for a long list of phenomena, q-entropies lead to a better match with
data than classical entropy. As another attractive feature, it turns out that
the popular power-laws appear naturally when applying Jaynes maximum

entropy principle (MaxEnt) with q-entropy in place of classical entropy.
In spite of the attraction to many, the new theory has also been met

with pronounced scepticism due, especially, to the deviation from standard
physical theory. What is missing in order for Tsallis theory to win general
recognition appears to be a convincing interpretation of the “mysterious”
q-entropies. This is where the present research claims to contribute.

Our approach involves a focus on the concepts truth, belief and knowl-

edge, with knowledge conceived as the synthesis of extended experience. We
appeal to game theoretical thinking involving two “players”, nature and the

1



physicist. The physicist seeks the truth, held by nature, but is restricted by
his beliefs. After extensive observations, knowledge is gained. The physicist
attempts to minimize description cost, whereas nature, following thoughts
going back to Jaynes, has the opposite goal. Entropy is defined as the min-
imal achievable description cost.

There are two main ingredients of our approach. Firstly, considerations
related to nature, and outside the control of the physicist, identifies the
world the physicist operates in. Secondly, we focus on description which is
controlled by the physicist. As to the first element, it rests on the assumption
that there is an interaction which, given truth (x) and belief (y), determines
knowledge (z). If the interaction is given by z = x, we operate in the
classical world, whereas the interaction z = y is taken to define a black hole.
In a black hole, you can only get out what you yourself put in. Interactions
which lie between these extremes are taken to define Tsallis worlds.

Regarding description, it is assumed that every observation is connected
with a cost. Based on a natural variational principle, it is possible to deter-
mine this cost and Tsallis entropy emerges as minimal expected description
cost.

Though our approach provides a reasonable interpretation, there are
many outstanding issues. These concern the physics behind interaction and
more concrete notions of description, ideally in terms of coding as known
from the classical case.

2 Technical sketch

Truth- and belief elements are taken to be probability distributions over
some discrete set, respectively x = (xi) and y = (yi) with i varying over some
discrete alphabet. Interaction is given by an interactor which is a function π

defined on [0, 1] × [0, 1]. It is assumed that π is sound, i.e. that π(s, s) = s.
The interpretation is that π(s, t) represents the “force” with which an event
will be presented to the physicist in case the true probability of the event
is s and the believed probability is t. We assume that π is consistent, i.e.
that

∑

i zi = 1 if x and y are probability vectors and zi = π(xi, yi). Simple
considerations then show that there exists q ∈ R such that π = πq with

πq(s, t) = qs + (1 − q)t . (1)

By a descriptor we understand a non-negative function κ defined on
[0,1] for which κ(1) = 0 and κ′(1) = −1. The latter condition serves to
fix the unit used which we shall refer to as nats. Given t, κ(t) represents
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the effort by the physicist, measured in nats, which is needed in order to
describe an event with probability t. The total description cost associated
with observations in a situation governed by the truth vector x = (xi) and
the belief vector y = (yi) is the quantity

Φ(x, y) =
∑

i

π(xi, yi)κ(yi) . (2)

0
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4

0 1

0

0.6

1

1.4

2

3

0

1

0 1 2 3 4

0

0.6
11.423

descriptors inverse functions (pr-checkers)

Figure 1: Descriptors and their inverses for selected values of q

Though x is unknown, the physicist can argue as follows in attempts
to assign a descriptor which is best suited in the world, he is operating in:
Surely, given any truth vector x, the total description cost is minimal when
there is a perfect match between belief and truth, i.e. when yi = xi for
all i. This principle is the perfect match principle (PMP). It dictates that
the general inequality Φ(x, y) ≥ Φ(x, x) holds. Thus the entropy of x is
S(x) = Φ(x, x). It is found that PMP can only be satisfied if q ≥ 0 and that
then the descriptor is given by the formula

κq(t) = lnq

1

t
(3)

with the q-logarithm defined as the usual natural logarithm when q = 1 and
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otherwise as

lnq t =
1

1 − q
(t1−q

− 1) . (4)

Inserting π = πq and κ = κq in (2), the q-description cost Φ(x, y) is obtained;
the associated Tsallis q-entropy is found to be

Sq(x) = Φq(x, x) =
1

1 − q

(

∑

i

x
q
i − 1

)

. (5)

Also q- divergence, defined as Dq(x, y) = Φq(x, y) − Sq(x) is important. It
may be written as

Dq(x, y) =
∑

i

( q

1 − q
xyq−1 + yq

−
1

1 − q
xq

)

. (6)

The descriptors κq and their inverses, called pr-checkers (pr for “proba-
bility”) and denoted εq play a central role, especially for the smooth technical
handling of MaxEnt (details in [3] and [4]). As to the interpretation of the
pr-checkers, ε(a) determines the smallest probability an event can have in
order that it can be described by a nats. The figure is meant to give an
impression of the descriptors and pr-checkers in the Tsallis family.

Acknowledgments: Stig Steenstrup pointed me to [2] and discussions with
Peter Harremoës and Jan Caesar helped to fix the terminology.
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Thermodynamical estimation of the limiting
potential of irreversible binary distillation

A. M. Tsirlin and I. N. Grigorevsky

Abstract

The limiting potential of binary distillation is considered for con-

ventional heat supply to the column bottom and heat removal from the

refluxer and for heat supply and removal distributed over the column

height. For either case, the limiting column capacity and the minimum

heat consumption are related to the external stream compositions and

to the heat and mass transfer coefficients.

1 INTRODUCTION

The problem of optimal distillation design has been the subject of numerous

studies [1 – 8]. The irreversibility of the process in the column has been taken

into account by correcting its reversible characteristics (by passing from the

minimum reflux rate to the working reflux rate, from theoretical separation

stages to real trays, and so on) through introduction of time-proved experi-

mental coefficients. Some of the studies suggest design improvements to the

process in order to reduce its cost and, accordingly, enhance its economic

effi- ciency. However, the following questions arise here: What is the highest

potential of such improvements? What advantages can they offer over the

conventional organization of the process? What form should the optimal

operating line have, and how this line can be realized without radically com-

plicating the process? These problems are far from being solved completely.

In our earlier works [9,10], based on results reported in [11], we determined

the "ideal" form of the operating line, for which the irreversibility of the pro-

cess, characterized by entropy production, is the lowest at a given column

capacity and integrated heat and mass transfer coefficients. Below, we make
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an attempt to take into account the irreversibility of the process in terms of

heat and mass transfer kinetics in order to elucidate the effect of the kinetic

factors on the limiting performance parameters of the column (capacity and

heat consumption). Since it is required to obtain an upper-bound estimate of

the potential of the column, the assumptions simplifying the computational

procedure and extending the applicability domain of the results will be made

so that none of them adds to the irreversibility of the process. Only in this

case can we claim that the performance parameters of a real column will

not exceed the estimated upper bound. These assumptions lead to estimates

biased upward, but these estimates are, nevertheless, much closer to the true

values than the estimates based on consideration of reversible processes. Fur-

thermore, the limiting capacity of the column can by no means be derived

from reversible estimates.

Here are the basic assumptions we make: mass exchange is equimolar; in

each cross section along the column height, the vapor and liquid flows have

similar temperatures and pressures (which vary from one cross section to

another); the effects of diffusion between adjacent cross sections are negligi-

ble, and the phases move in nearly plug-flow regimes; the heat of the exiting

streams is transferred to the entering streams, and the irreversibility of this

heat transfer can be neglected; the mixture to be separated, as a liquid heated

to its boiling point, is fed into that cross section of the column in which it

has the same composition as the reflux.

Thus, we will consider an "idealized" column, taking into account two

sources of irreversibility, namely, heat transfer associated with heat supply

to the exhausting section of the column and heat removal from the rectifying

section and mass transfer between the vapor and the reflux along the column

height. Note that, if the mass transfer coefficient is derived from data for an

operating column, it indirectly allows for the deviation from the plug flow

pattern, mixing on trays, and diffusion between cross sections. In the next

section, using thermodynamic balance equations for a binary distillation col-

umn, we will correlate the compositions and flow rates of the external streams
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with heat consumption in the case of heat supply to the column bottom and

heat removal from the refluxer. The limiting performance parameters of this

column will be estimated. In the last section, we will investigate the limiting

performance of the column with the ideal operating line and report the laws

of heat supply and removal along the column height that make it possible to

effect this operating line.

2 COLUMN IN WHICH HEAT IS SUPPLIED

TO THE BOTTOM AND IS REMOVED FROM

THE REFLUXER

Consider the steady-state operation of a two-section binary distillation col-

umn. The mole fractions of the lower boiling component in the feed stream

(x
F

) and in the steams drawn from the refluxer (x
D
) and bottom (x

B
), as

well as the related liquid temperatures at the bottom (T
B
) and in the refluxer

(T
D
), will be fixed. The draw-off ratio is completely determined by the com-

positions of the entering and exiting streams. From the material balance for

the lower boiling component, we derive

ε =
xF − xB
xD − xB

. (1)

Under the assumption that the liquid phase is similar in properties to

ideal solutions and the vapor phase is similar to ideal gases, the equilibrium

concentrations of the lower boiling component in the vapor and in the liquid

are related as follows [1]:

y0(x) =
αx

1 + (α− 1)x
, (2)

where y0 is the concentration of the lower boiling component in the vapor

phase, α =
P 0

1 (T )

P 0
2 (T )

> 1 is the relative volatility, and P 0
i is the saturation
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vapor pressure over the pure ith component (i = 1 for the lower boiling

component).

Thermodynamic balances for binary distillation and the reversible

estimate of energy consumption.

Let us write the thermodynamic (energy and entropy) balance equations

under the assumption that the mixtures are similar to ideal solutions and

the heat of mixing can be neglected:

q+ − q− + g
F
h

F
− g

F
εh

D
− g

F
(1− ε)h

B
= 0, (3)

g
F
s

F
− g

F
εs

D
− g

F
(1− ε)s

B
+

q+

TB
−

q−
TD

+ σ = 0. (4)

From conditions (3) and (4), by eliminating q−, we obtain

q+ = g
F

TB
TB − TD

[

(s
F
TD − h

F
)− ε(s

D
TD − h

D
)−

− (1− ε)(s
B
TD − h

B
)
]

+ σ
TBTD

TB − TD
= q0

+ + σ
TBTD

TB − TD
. (5)

The first term on the right-hand side of this equation, designated q0
+ is the

heat consumption in the reversible process, when the heat and mass transfer

coefficients (column dimensions) are arbitrarily large. It depends only on the

parameters of the entering and exiting streams and is proportional to the

feed flow rate gF .

The second term accounts for the dissipative loss of energy. The external

streams entering and exiting the column usually pass through heat exchang-

ers, in which the hot streams are cooled and the feed streams are heated

to the feed tray temperature. We will include these heat exchangers in the

system and assume that the irreversible losses there are low. It will then

be possible to assume that all external streams have the same temperature

and that this temperature is close to TD. These assumptions lead to some

underestimation of the energy spent on separation, but they substantially

simplify the analysis of the system. In particular, under these assumptions

q+ = q− = q.
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Taking into account the fact that the difference ((h − TDs)) for each

stream is equal to the molar free energy, i.e., to the chemical potential µ of

the mixture at T = TD, we obtain the following relationship between the

heat flux and the feed flow rate:

q = g
F

TB
TB − TD

[

εµ(TD, xD)+(1−ε)µ(TD, xB)−µ(TD, xF )
]

+σ
TBTD

TB − TD
. (6)

For mixtures similar to ideal solutions, the chemical potentials are written

as

µi(T, P, xi) = µi0(P, T ) +RT lnxi, i = D,B, F. (7)

Because the chemical potentials in each particular cross section refer to

the same temperature and pressure, we can write the following differences:

µ1(T, y
0)− µ1(T, y) = RT ln

y0

y
,

µ2(T, 1− y)− µ2(T, 1− y0) = RT ln
1− y

1− y0
.

The right-hand side of equality (6) can be expressed in terms of stream

compositions:

q = g
F

TB
TB − TD

[

AF − εAD − (1− ε)AB

]

+
σTDTB
TB − TD

=
p0

η
K

+
σTD
η

K

. (8)

Here, Ai = −RTD
[

xilnxi+(1−xi)ln(1−xi)
]

(i = F,D,B) is the reversible

work of the separation of 1 mol of the ith stream into pure components. The

right-hand side of this equality is equal to the power of separation of the feed

flow g
F

with the lower boiling component concentration x
F

into streams with

the lower boiling component concentrations x
B

and x
D

at the temperature

T
D

divided by η
K
= (1−TD/TB). By equating the entropy production in (8)

to zero, we obtain the reversible estimate q0 =
p0

η
K

for heat consumption in

the distillation process.
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Expression (8) means that reversible distillation can be represented as a

reversible heat engine operating between reservoirs having the temperatures

TB and TD and producing the reversible separation power p0.

Since the heat flux q can be expressed as the product of the vapor flow

rate in the column (V ) and the latent heat of evaporation (r),

q = V r, (9)

and the entropy production depends on the feed flow rate gF , the vapor

flow rate, and the transfer coefficients k, condition (8) relates the variables

gF , V , and k through thermodynamic balances. Expression (8) will be called

the thermodynamic relationship.

Irreversible losses of energy.

According to (5), the energy consumption includes both q0 and an ir-

reversible component proportional to the entropy production σ. The main

source of irreversibility in the column is mass transfer between the vapor and

the liquid, during which the lower boiling component passes from the liquid

to the vapor and the higher boiling component passes from the vapor to the

liquid.

In order to calculate the entropy production associated with mass trans-

fer, we will use a packed column model in which the vapor and liquid move

countercurrently in a near-plug-flow regime and mass transfer is equimolar.

The vapor flow rate V in the case of equimolar mass transfer is invariable

and is related to the reflux flow rate L by the following equalities:

for the column top,

L
D
= V − gD, (10)

for the column bottom,

L
B
= V + g

B
. (11)

In binary distillation, the concentration of the higher boiling component

in the liquid and vapor streams is 1 − x and 1 − y, respectively, and the
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driving force of the process is determined by the difference between the cur-

rent concentration y and the equilibrium concentration y0(x); therefore, the

entropy production associated with mass transfer can be expressed in terms

of flow rates and chemical potentials as

σg =

xD
∫

xB

1

T (x)
{g1(y, y

0)[µ1(T, y
0) −

−µ1(T, y)] + g2(1− y, 1− y0)[µ2(T, 1− y)− µ2(T, 1− y0)]} dx, (12)

where gj and µj (j = 1, 2) are the mass transfer fluxes and chemical

potentials of the components. Taking into account the expression for the

chemical potentials (7) and the equimolarity of mass transfer (g1(y, y
0) =

−g2(1− y, 1− y0) = g,), expression (12) can be rewritten as

σg = R

xD
∫

xB

g(y, y0) ln
y0(1− y)

y(1− y0)
dx. (13)

Here, it is accepted that the liquid feed to be separated, whose flow rate

is g
F
, is at its boiling point and is entered into that column cross section in

which its composition coincides with the reflux composition.

Thus, the mass transfer component of the entropy production is deter-

mined by the forms of the equilibrium and operating lines. The former

depends on the properties of the mixture to be separated (relative volatility

α; see Eq. (2)), and the latter depends on V . From the material balance

equations for the lower boiling component at the column top and bottom,

we obtain

V y(x)− g
D
x

D
− xL

D
= 0, (14)

L
B
x− V y(x)− g

B
x

B
= 0. (15)

In view of (10) and (11),

y
D

(x, V, g
D
) =

(

1−
g

D

V

)

x+
x

D
g

D

V
, (16)
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y
B

(x, V, g
D
) =

(

1 +
g

B

V

)

x−
x

B
g

B

V
. (17)

It follows from these equalities that y
D

(xD) = xD, y
B

(xB) = xB, y
D

(xF ) =

y
B

(xF ) = yF , and yF − xF =
gD
V

(xD − xF ).

Substituting expressions (16) and (17) into equality (13) and expressing

the exit flow rates in terms of the feed flow rate gF and ε makes it possible

to determine σg(V, gF
) for the given mass transfer law. The integral in (13)

should be calculated as the sum of integrals over the intervals between xB and

x
F
, where y(x) = y

B

(x, V ), and between x
F

and xD, where y(x) = y
D

(x, V ).

When passing from x to another variable depending monotonically on x,

it is necessary to recalculate the effective mass transfer coefficient. For ex-

ample, when passing to integration over the column height, the mass transfer

coefficient per unit height, k̄, is obtained from the mass transfer coefficient

per unit change in the lower boiling component concentration, k, by dividing

it by the column height and multiplying it by the length of the concentration

interval:

k̄ =
k(xD − xB)

H
. (18)

Let us establish a relationship between the vapor flow rate V and the

column capacity. To do this, we will take into account that the total amount

of the lower boiling component passing from the liquid into the vapor phase

in the top and bottom sections of the column is

x
F
∫

x
B

g(y
B

(x, V, g
F
), y0(x))dx+

x
D
∫

x
F

g(y
D

(x, V, g
F
), y0(x))dx = V [yD(xD)−y

B(xB)].

(19)

Condition (19) relates the vapor flow rate V to the feed flow rate g
F
. This

relationship will be designated V (g
F
). The substitution of this relationship

into (16) and (17) demonstrates that the dissipative losses and, accordingly,

the heat consumption q are completely determined by flow parameters and

the feed flow rate. The distillation column has a limited capacity, like any

heat-driven separation system. Let the mass transfer flux be proportional
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to the difference between the working and equilibrium concentrations of the

lower boiling component. Equality (19) will then take the following form:

∫ xF

xB

k(y0(x)− yB(x))dx+
∫ xD

xF

k(y0(x)− yD(x))dx = V [yD(xD)− yB(xB)],

(20)

where y0(x, α), yD(x), and yB(x) are defined by expressions (2), (16), and

(17), respectively, and depend on the compositions of the entering and exiting

streams (xF , xB, and xD), on the vapor flow rate V , and on the feed flow

rate gF .

In the widespread case of yD(xD) = xD and yB(xB) = xB, after taking

the integrals we obtain an expression relating the vapor flow rate to the feed

flow rate gF and the compositions xF , xB, and xD:

b(xB, xD, xF )gF = a(xB, xD, α)V −
xD − xB

k
V 2. (21)

Here, ε is defined by expression (1) and the following designations are intro-

duced:

a(xB, xD, α) =
α(xD − xB)

α− 1
−

α

(α− 1)2
ln

(

1 + xD(α− 1)

1 + xB(α− 1)

)

−
(x2

D − x2
B)

2
,

and

b(xB, xD, xF ) = 0, 5
[

ε(xD − xF )
2 + (1− ε)(xF − xB)

2
]

are complexes depending on the compositions of the exiting streams and on

the relative volatility. In the general case, we have, instead of Eq. (21),

b(xB, xD, xF )gF = a(xB, xD, α)
yD(xD)− yB(xB)

xD − xB
V −

(yD(xD)− yB(xB))
2

k(xD − xB)
V 2.

(22)

Equalities (21) and (22) relate the variables V , gF , and k through mass

transfer kinetics. They will be called the kinetic relationships.

From condition (21), we will derive an expression for the effective mass

transfer coefficient. This coefficient depends on the vapor flow rate as

k =
V 2(x

D
− x

B
)

aV − gF b
. (23)
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After the determination of the k value that is necessary for achieving the

required column capacity and stream compositions, knowing the k̄ value, we

can estimate the column dimensions using equality (18). Formula (23) can

also be used to calculate the effective mass transfer coefficient in an operating

column because, in this case, all the variables appearing on its right-hand

side are known.

The maximum of expression (21) with respect to V determines the limit-

ing capacity of the column at a fixed mass transfer coefficient. The limiting

capacity is attained at the vapor flow rate

V max =
ka(xB, xD, α)

2(xD − xB)
(24)

and is

gmax
F =

ka2(xB, xD, α)

4(xD − xB)b(xB, xD, xF )
. (25)

Further raising the vapor flow rate will reduce the column capacity. The

maximum appropriate vapor flow rate V max determines the maximum ap-

propriate heat flux q∗ = V maxr. Use of Eq. (22) implies more tedious com-

putations. However, the computational experience has demonstrated that

Eq. (22) leads to only slightly different results.

The stream compositions satisfy the inequalities

xD > y0(xF ), xF > y0(xB),

And the equilibrium curve should be above the operating line. The operating

line ordinate corresponding to xF is the closest to the equilibrium curve.

From the inequality y0(xF ) ≥ yF and expression (16), it follows that the

vapor flow rate is

V > gF ε
xD − xF

y0(xF )− xF
. (26)

Condition (23) also imposes the constraint V >
g

F
b

a
on the vapor flow

rate since its denominator must be positive. Figure 1 plots the dependence
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Fig. 1. Column capacity as a function of the vapor flow rate. The dashed line shows the

nonoperating region. V
lim is the vapor flow rate limit.

of the column capacity gF on the vapor flow rate. The line M represents

inequality (26).

The kinetic and thermodynamic relationships (8) and (21) at given heat

transfer coefficients at the column bottom and in the refluxer provide two

links, one thermodynamic and the other kinetic, between the three variables

gF , V , and k. At a give value of k, which indirectly characterizes the column

dimensions, these links allow one to determine the gF and V values that

would ensure the desired stream compositions. At a given feed flow rate

gF , they make it possible to determine the vapor flow rate V and k (heat

consumption). The feed flow rate cannot exceed its maximum possible value,

which is given by expression (25).

Computational procedure.

We will assume that the column capacity gF and the bottom and refluxer

temperatures are known. Simultaneously solving the thermodynamic and

kinetic relationships (8) and (21), in which the heat consumption is expressed

in terms of the vapor flow rate, makes it possible to determine k and V . The

V value is determined by numerically solving the thermodynamic equation

(8), which can be rewritten as

rV = q0(gF ) +
TD
ηk

σ(V, gF ). (27)

The reversible component q0 of the heat consumption depends on the feed
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flow rate gF , and the irreversible component is proportional to the entropy

production σ and is determined via taking integral (13) in which the mass

transfer coefficient k(V ) is expressed through the feed flow rate and the va-

por flow rate (see expression (23)). The integration interval of (13) should be

divided into the two intervals corresponding to the rectifying and exhausting

sections of the column because the operating lines in these sections are dif-

ferent. For the linear law of mass transfer, the entropy production will take

the following form (see (13)):

σ(V ) = R





xF
∫

xB

g(yB, y0) ln
y0(1− yB)

yB(1− y0)
dx+

xD
∫

xF

g(yD, y0) ln
y0(1− yD)

yD(1− y0)
dx



 .

(28)

Here,

g(yB, y0) = k(V )(y0(x)− yB(x)), (29)

g(yD, y0) = k(V )(y0(x)− yD(x)). (30)

After solving Eq. (27), it is possible to determine the corresponding value of

k and, from it, the necessary column height.

Relationships (8) and (21) between the basic variables characterizing the

column make it possible to solve technical and economic problems in which

the heat transfer coefficient, the column size, and the column capacity are

sought variables. The optimality criterion in these problems should reach

its extremum within the tolerance region of the variables, which is given by

these relationships.

Irreversibility of heat transfer. For heat fluxes proportional to the

temperature drop, the entropy production due to the thermal process in the

bottom section and refluxer is given by

σq = q2
[ 1

β
B
TBT+

+
1

β
D
TDT−

]

, (31)

where β
B

and β
D

are the heat transfer coefficients and TB and TD are the

liquid temperatures at the bottom and in the refluxer, which are assumed to
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be known. The heat flux is expressed as

q = rV = β
B
(T+ − TB) = β

D
(TD − T−). (32)

The temperatures TB and TD are determined by the properties of the com-

ponents being separated, and the pressure in the column is set to satisfy

the condition that T− is equal to the ambient temperature. The distribution

of heart transfer surface areas between the bottom and the refluxer should

minimize σq under dome constraints.

3 OPTIMAL ORGANIZATION OF BINARY

DISTILLATION

As was shown above, the energy consumption includes both q0
+, and an ir-

reversible component proportional to the entropy production σ. At a fixed

feed flow rate and column dimensions, the entropy production cannot be

zero. Let us determine the minimum possible value of irreversibility and the

corresponding design of the column.

Mass transfer with minimum irreversibility and the ideal form

of the operating line. As distinct from the entropy production associ-

ated with heat supply and removal, the entropy production in mass transfer

depends on the forms of the equilibrium and operating lines because the

driving force of mass transfer is determined by the difference between the

current concentration y(x) and the equilibrium concentration y0(x). The en-

tropy production associated with mass transfer is given by expression (12).

The functions y and y0 depend on x, but this variable ia not involved ex-

plicitly in the expression for σ. Since y0 is a single-valued and monotonic

function of x, the entropy production in the column for x varying between

xB and xD can be calculated using expression (13):

σ = R

y0(xD)
∫

y0(xB)

g(y, y0) ln
y0(1− y)

y(1− y0)
dy0. (33)
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The operating line should be optimized to minimize σ at a given inte-

grated mass transfer flux ḡ:

y0(xD)
∫

y0(xB)

g(y, y0) dy0 = ḡ. (34)

The value of ḡ which characterizes the intensity of mass transfer, depends on

the compositions of the entering and exiting streams and the feed flow rate

gF .

For a mass transfer flux proportional to its driving force,

g(y, y0) = s ln
y0(1− y)

y(1− y0)

problem (33), (34) was solved in [11]. The optimum form of the operating

line is given by

y(y0) =
y0

γ − (γ − 1)y0
, (35)

and the total mass transfer flux in the optimal column is constant through-

out the column height and is equal to s ln γ. To find the constant γ, it is

necessary to express ḡ in expression (34) in terms of the feed flow rate and

the compositions of the external streams.

For the relationship y0(x) in the form of Eq. (2), the ideal operating line

equation for the binary distillation column appears as

y(x) =
αx

γ + (α− γ)x
. (36)

Since y(x) > x, the following equality is true for the parameter γ:

1 < γ < α. (37)

For realization of the optimal operating line, it is necessary to determine

the corresponding laws of heat supply (removal) along the column height.

The changes in the vapor and reflux flow rates along the column height for

all l 6= l
F

satisfy the condition

dV

dL
= 1, (38)
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Therefore, for any form of the operating line, equalities (10) and (11) are valid

for the exhausting and rectifying sections of the column. The variation of the

vapor and liquid flow rates along the height of a column with intermediate

heat supply is shown in Fig. 2.

Dg

fg

Bg
L

L

V

V

H lFl0

Fig. 2. Variation of the vapor and liquid flow rates along the height of the column with

intermediate heat supply (removal).

The vapor flow rate for any cross section of the column and, accordingly,

for the x value corresponding to this cross section can be derived from the

material balance for the lower boiling component. For the rectifying section

of the column,

V
D
(x)y(x)− g

D
x

D
− xL

D
(x) = 0.

Hence, taking into account that x < x
D

LD = VD − gD, we obtain

V
D
(x) = g

D

x
D
− x

y(x)− x
, x

F
≤ x < x

D
, V

D
(x

D
) = g

D
, y(x

D
) = x

D
. (39)

Likewise, for the exhausting section of the column,

V
B
(x) = g

B

x− x
B

y(x)− x
, xF ≥ x > xB, L(x

B
) = g

B
. (40)

The flow rate of the lower boiling component passing from the liquid into

the vapor phase is equal to the feed rate of this component (gFxF ) minus the

withdrawal rate of this component as bottoms (gBxB). Since the equivalent

mass transfer flux is constant, we obtain the following equation for γ:

ḡ = s(y0(xD)− y0(xB)) ln γ = 2(gFxF − gBxB) = 2gF (xF −xB(1− ε)). (41)
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The doubling of the flow rate is due to the fact the countercurrent flow of

the higher boiling component is equimolar to the flow of the lower boiling

component. From (41), we obtain

γ = exp
[

2gF
(xF − xB(1− ε))

s(y0(xD)− y0(xB))

]

. (42)

The minimum possible entropy production associated with the irreversibility

of mass transfer is as follows (see (33)):

σmin = Rḡ(y0(xD)− y0(xB)) ln γ =
Rḡ2

s(y0(xD)− y0(xB))
=

= g2
FR

4(xF − xB(1− ε))2

s(y0(xD)− y0(xB))
.

(43)

The substitution of σmin into the above expressions for the heat con-

sumption and limiting column capacity provides lower and upper estimates

of these quantities, respectively. The desired heat supply (removal) laws and

heat transfer area distribution correspond to these estimates.

Distributed heat supply and the corresponding minimum irre-

versibility. The above relationships make it possible to understand how the

heat removal and supply along the column height should be organized so as

to effect the ideal operating line y(x). In the case of heat removal and vapor

condensation in the rectifying section of the column, the removed heat flux

q
D
(x) < 0 is

q
D
(x) = r

dV
D

dx
= rg

D

(1− dy

dx
)(x

D
− x)− (y − x)

(y(x)− x)2
. (44)

Here, r is the specific heat of evaporation (condensation). In the general case,

it depends on the feed composition. Likewise, for the exhausting section of

the column, the supplied heat flux q
B
(x) > 0 that causes reflux evaporation

is

q
B
(x) = r

dV
B

dx
= rg

B

(y − x)− ( dy
dx
− 1)(x− x

B
)

(y(x)− x)2
. (45)
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In order to determine, using these formulas, the distribution of the heat

fluxes over the column height, it is necessary to calculate x(l). The heat flux

is expressed as

q(l) = r
dV

dl
= r

dV

dx

dx

dl
. (46)

Let us write the material balance equation for the lower boiling component,

taking into account that, in the optimal column, the mass transfer flux per

unit height is constant, being equal to gl = ḡ/H, and is given by expression

(41). So, we obtain

d

dl
[V

D
y] = gl −

qDy

r
= gl −

dV
D

dl
y ⇒

dx
D

dl
=

gl
dy

dx
V

D
(x)

, x
D
(lF ) = xF . (47)

Substituting the solution x
D
(l) of this equation into (44) yields the optimal

heat removal law q
D
(l) for the rectifying section of the column.

For the exhausting section, similar expressions are valid, with the only

difference that the subscript D is replaced with the subscript B and the

boundary condition for x
B
(l) is written as x

B
(0) = x

B
.

Let us estimate the minimum entropy production associated with heat

supply to the liquid phase in the exhausting section and with heat removal

from the vapor phase in the rectifying section. We will assume that the heat

flux is proportional to the temperature difference and to the heat transfer

coefficient β(x). The integrated value of this coefficient, β̄, is definite since

it is related to the heat transfer area:
∫ x

D

xB

β(x)dx = β̄. (48)

The entropy production in heat removal from the rectifying section is given

by

σ
Dq =

x
F
∫

x
D

q2
D
(x)dx

β
D
(x)T

D
(x)u(x)

. (49)

Here, u(x) stands for the absolute temperature of the coolant (usually, wa-

ter at the initial temperature T0) and β
D
(x) is the heat transfer coefficient

distribution.
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The temperature T in the column as a function of the lower boiling com-

ponent concentration x can be determined via the mass flux, taking into

account the expressions for the chemical potentials. In view of the equimo-

larity of mass transfer, the flux of the lower boiling component from the

liquid to the vapor is half the total flux ḡ; therefore,

kRT (x) ln
y0(x)

y(x)
= ḡ/2 =

k

2
ln γ. (50)

Hence,

T (x) =
ln γ

2R ln y0(x)
y(x)

=
ln γ

2R ln γ+x(α−γ)
1+x(α−1)

, x
B
≤ x ≤ x

D
. (51)

The relationship q
D
(x) is known (see (44)). The coolant temperature u(x)

and the heat transfer coefficient β
D
(x) can be derived from the heat balance

in the heat exchanger and heat transfer kinetic equation:

(u(x)− T0)W = rV
D
(x)⇒ u(x) =

rV
D
(x)

W
+ T0, (52)

β
D
(x) =

q
D
(x)

T
D
(x)− u(x)

. (53)

Here, W is the water equivalent of the coolant flow rate and V
D
(x) is given

by expression (39).

In turn, the water equivalent depends on the fraction of the total heat

transfer coefficient associated with the rectifying section, µ, because

∫ x
D

x
F

β
D
(x) =

∫ x
D

x
F

q
D
(x)Wdx

T
D
(x)− rV

D
(x)−WT0

= µβ̄. (54)

The solution of Eq. (54) determines W (µ). By substituting this relationship

into (52) and (53) and substituting the result into (49), we determine β
D
(x, µ)

and σ
Dq(µ).

In the exhausting section, the partial evaporation of the liquid stream is

usually due the supply of a vapor at a temperature T+, which condenses on

going from x
B

to x
F
. This temperature and the supplied heat flux qB(x) will
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be considered to be known (see (45)). The entropy production will appear

as

σ
Bq =

1

T+

xF
∫

x
B

q2
B
(x)dx

β
B
(x)T

B
(x)

. (55)

The heat transfer coefficient distribution here is determined by a formula

similar to the formula used for the rectifying section:

β
B
(x) =

q
B
(x)

T+ − T
B
(x)

. (56)

The choice of temperature depends on the distribution of the heat transfer

area between the sections because

∫ x
F

x
B

β
B
(x) =

∫ x
F

x
B

q
B
(x)dx

T+ − T
B
(x)

= (1− µ)β̄. (57)

By determining the relationship T+(µ) from condition (57) and substituting it

into expression (55), we obtain σ
Bq(µ). The distribution of the heat transfer

area between the sections must satisfy the condition

σq(µ) = (σ
Bq(µ) + σ

Dq(µ))→ min. (58)

4 CONCLUSIONS

In this work, we have set up computational relationships directly taking into

account the irreversibility effects in terms of heat and mass transfer kinetics

and thermodynamic balances. Based on these relationships, we suggest a

computational procedure for determining the parameters of a binary distil-

lation column using the conventional heat supply (removal) scheme and a

column height-distributed one. In the latter case, the column performance

parameters can be used to assess the thermodynamic perfection of the dis-

tillation process and find a way of reducing the irreversible losses.
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NOTATION

g — flow rate, mol/s;

ḡ — total mass transfer flux throughout the column height, mol/s;

H — column height, m;

h — molar enthalpy, J/mol;

k — mass transfer coefficient per unit change in the lower boiling component

concentration, mol/s;

k̄ — effective mass transfer coefficient per unit height of the column, mol/(s

m);

L — liquid flow rate, mol/s;

l — coordinate characterizing position along the column height, m;

P — pressure, Pa;

p — power, W;

q, q0 — total heat consumption and heat consumption in the reversible pro-

cess, W;

q+, q− — heat fluxes supplied to the column bottom and removed from the

refluxer, W;

R — universal gas constant, J/(mol K);

r — molar heat of evaporation, J/mol;

s — coefficient of proportionality between the mass transfer flux and the

driving force, mol/s;

sD, sB, sF — molar entropies in the refluxer, bottom, and feed stream, J/(mol

K);

T+, T− — temperatures of the vapor heating the bottom and of the water

cooling the refluxer, respectively, K;

V — vapor flow rate, nol/s;

W — water equivalent of the coolant flow rate, kg/s;

x — molar concentration of the lower boiling component in the liquid phase,

mol/l;

y — molar concentration of the lower boiling component in the vapor phase,
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mol/l;

y0 — equilibrium concentration of the lower boiling component in the vapor

phase, mol/mol;

α — relative volatility;

β — heat transfer coefficient, W/K;

β̄ — total heat transfer coefficient, W/K;

γ — parameter in the ideal operating line equation;

ε — draw-off ratio;

µ — chemical potential, J/mol;

σ — entropy production, W/K.

SUBSCRIPTS AND SUPERSCRIPTS

B — bottom;

D — refluxer;

F — feed;

i — flow number;

q — heat transfer;

g — mass transfer;

j — component number;

lim — limiting value.
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The thermodynamic properties of highly non-ideal mixtures of associated or hydrogen-
bonded fluids and their correlation/analysis in terms of molecular thermodynamic models 
are not only of academic interest but also of importance for the rational design of 
industrial chemical processes involving such systems. Hydrogen bonding may be one of 
the most important interactions in these mixtures and such types of interactions may 
appear between molecules of the same and/or different kind. Moreover, hydrogen 
bonding interactions may appear between two different functional groups in the same 
molecule.  
  
Glycols are important compounds for the gas production and the chemical industry. 
Monoethylene glycol (MEG) is mainly used as antifreeze and gas hydrate inhibitor of 
natural gas, while diethylene glycole (DEG) and triethylene glycol (TEG) are used as 
drying agents. Other compounds, such as tetraethylene glycol (TeEG) and propylene 
glycol (PG) are mainly used as solvents in numerous applications. On the other hand, 
higher molecular weight polyglycols, such as poly(ethylene glycol) (PEG) and 
poly(propylene glycol) (PPG) are used in many biomedical applications.  
 
However, the modeling of glycol containing mixtures is a challenging task due to the 
strong specific inter- and intra- molecular interactions that are observed in such mixtures. 
Glycol molecules can form inter- and intra- molecular hydrogen bonds, due to the 

 and  association. Moreover, in their solutions with other 
associating fluids, such as water or alcohols, they also form cross- hydrogen bonds with 
solvent molecules. This complex hydrogen bonding behavior has a great impact on the 
properties and the phase equilibria of such mixtures.  

....OH OH− − ....OH O− − −

 
In this study the phase behavior of mixtures with glycols is modeled using the Non 
Random Hydrogen Bonding Theory (NRHB) [1, 2]. This is an advanced equation of state 
model, based on statistical thermodynamics, which is able to account for the various 
hydrogen bonding interactions. The vapor – liquid equilibria of binary systems containing 
glycols or polyclycols with other hydrogen bonding fluids such as water, alcohols or 
amines was investigated. Effort has been made to explicitly account for all hydrogen 
bonding interactions. The results reveal that the NRHB model offers a flexible approach 
to account for various self- or cross associating interactions. In most cases model’s 
predictions (using no binary interaction parameter kij=0) and model’s correlations (using 
one temperature independent binary interaction parameter, kij≠0) are in very satisfactory 
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agreement with the experimental data, despite the complexity of the examined systems. 
Representative results are presented in Figures 1 and 2 
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Figure 1. Experimental data (points), NRHB predictions (dotted lines, kij=0) and 
correlations (solid lines, kij≠0) for Water – DEG (left) and Water – TEG (right) systems. 
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Figure 2. Experimental data (points), NRHB predictions (dotted lines, kij=0) and 
correlations (solid lines, kij≠0) for water – PEG (Mw= 600 g mol-1, left) and  methanol - 
PPG  (Mw= 3350 g mol-1, right) 
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Introduction  
 The Fe-base alloys of the Fe-Cr system stimulated interest during recent years because of high radiation 

stability at temperatures between 600-900К. So it is interesting for better understanding of physical nature of 
material stability to compare the behaviour under irradiation of BCC- Fe-base alloys and FCC-alloys of the Ni-Cr 
system. It has been established that the high radiation stability of FCC Ni-Cr - alloys depends mainly on position of 
configurational point of alloy composition. With increasing the Cr-content in Ni-Cr alloys from stoichiometrical 
composition of the Ni2Cr – compound the enthalpy of formation (∆H) increases from negative values through zero 
(at xCr≈0,41 and T=723K) up to the positive values. It is possible to formulate the hypothesis: the alloys with 
compositions arranged near the configurational point with the zero value of ∆H have high radiation stability at the 
low temperature. At higher temperatures it is necessary to take into account the behaviour of concentration 
dependences of mixing Gibbs energy and their singularities, namely inflection points.  
The published results of experimental investigations of the BCC- Fe-base alloys on the Fe-Cr system in 
compositions about 9-12 at.% Cr demonstrated  high radiation stability in comparison with austenitic steels [1-2]. At 
the same time ab-initio calculated results [3-7] showed the sign-change concentration dependence of mixing 
enthalpy ∆H(xCr) for BCC –alloys in the Fe-Cr system under 0 K in a ferromagnetic state. It was proved by 
modeling as ab-initio as far as physical-empirical models that between different contributions (configurational,  
magnetic, vibrating, electronic and elastic energy  accounted for the elastic distortions of crystal lattice of the solid 
solution induced by the static displacements of ionic cores)  of a total free Gibbs energy mixing of BCC – 
ferromagnetic solutions of the Fe-Cr system has demonstrated that magnetic part of free energy is a dominant 
contribution on stabilization of Fe-rich BCC – alloys in the range of low and medium temperatures. It must be note 
that the Fe-Cr and Ni-Cr systems have the same behavior as magnetic properties for as sign-change concentration 
dependences of mixing enthalpy ∆H(xCr) for BCC –alloys in the Fe-Cr system and FCC Ni-Cr – alloys. For the Ni-
Cr system ∆H(xCr) for FCC –phase was obtained by experimental investigations while for the Fe-Cr system 
ferromagnetic BCC-phase the results on ∆H(xCr) were obtained by ab-initio calculations only. So the FCC-alloys of 
the Ni-Cr system will be discussed in the next section in the beginning and then we will return to BCC-alloys of the 
Fe-Cr system. 
The experimental results 

Non-equilibrium state in the Ni-Cr alloys` system, created by quenching from the temperature of 1050-1100 °C, 
begins to show itself at the temperatures corresponding to the working temperatures (above 350 °C). At the process 
of aging at the temperature of 450 °C after quenching from monophase γ - region of the state diagram (fig. 1a) the 
long ordering is developed in the structure of alloys near a stoichiometrical composition (alloy No. 1).  

In the alloy No. 1 the domains of the Ni2Cr phase as large as 4-10 nm with number density 7·1021 m-3 separated 
by the antiphase boundaries are formed (fig. 1b). In the alloys with 38-41wt % Cr concentration development of 
long order Ni2Cr - phase occurs more slowly. In the alloy No.4 in the process of aging is formed short ordering only, 
which is demonstrated as tweed contrast – fig.1 c. 

In the alloys more 41wt % Cr concentration (alloy No. 6) during the aging the Cr –base α – phase is formed as 
lamellae of cellular dissociation (fig.1 d), then in the fields between α - phase lamellae the Ni2Cr – precipitates are 
formed. The Ni-42Cr-1Mo and Ni-47Cr-1Mo alloys (types No. 4 and 6) have been neutron irradiated in BOR – 60 
reactor up to 32 dpa at 350 °C, which microscopic structures are presented in figs. 1e and 1f. In the short ordered Ni-
42Cr-1Mo alloy (type No. 4) the dislocation loops of number density equal 4,5·1021m-3 , with diameter 14 nm are 
formed. In the Ni-47Cr-1Mo alloy (type No. 6) without short ordered structure the dislocation loops of number 
density equal 3·1022 m-3, with diameter 7 nm are formed. The total elongation of short ordered irradiated alloy was 
three times more respectively [11]. Let us examine results obtained by X-ray and pycnometric studies, which prove 
the existence of short ordering in crystal structure of alloys of the Ni-Cr system. The formation of short and/or long 
ordering under temperature influence reduce decreases the lattice period of crystal structure of alloys of the Ni-Cr 
system (fig. 2) and increases the density of alloys (fig. 3). The formation of the Ni2Cr phase increases the density of 
alloys, but the formation of the α - phase decreases the density. It may be seen in the density increase of alloy No. 4, 
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that there is in the vicinity of the Ni2Cr/ (Ni2Cr +α) phase boundary and in the density decrease of alloys with Cr 
concentration more than 44 at. %. 

 
 
The density of these alloys decreases owing to increasing α - phase fraction. Accordingly to equilibrium phase 

diagram (fig. 1a) in temperature range from 300 up to 450°C these compositions alloys must be in equilibrium state 
having two Ni2Cr - and α - phases.  

But sluggishness of diffusion processes at above mentioned temperatures reduces to the α- phase precipitates 
firstly and Ni2Cr – phase precipitates from metastable γ- phase secondly. So there are three phases in alloys, namely 
stable α- and Ni2Cr – phases and metastable γ- phase. After aging at 450 C the X-ray pictures of alloys does not 
found the X-ray reflections of the α- phase owing to its small fraction, but the measurements of alloy density (fig.3) 
and metallography (fig.1d) show it. 
The comparison of Bragg reflections (331)- types of the Ni-41Cr alloy, aged at 300 and 450 C, demonstrates 
decreasing of lattice period (∆d/d ≈ 4х10-4) and increasing width of reflections which equals ∼20 %, that proves the 
existence of short ordering.  
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Fig.2. The lattice parameters of crystal structure of Ni-Cr 
alloys: ▲ – matrix, aging at 300 °С; ◆,■ - matrix, aging 
at 450 °С; × - the ordered Ni2Cr – phase at 450 °С  

Fig.3. The relative change of lattice parameters of crystal 
structure and density of aging alloys of the Ni-Cr system  
at increasing temperature aging from 300 to 450 °С 
during 40000 h. 



The assessment of influence of short ordering in Ni-Cr alloys on recombination of vacancies and interstitials was 
realized by using positron annihilation method. The change of photon distribution spectrum at capture of positrons 
by vacancies we assessed by using changing the S- parameter, that proportional to vacancy concentration. When 
vacancy concentration increases then the probability of annihilation of positrons with conduction electrons and value 
of the S- parameter increase also. The Ni-32Cr-1Mo alloy in state of short ordering (aging at 300°С during 40000 h) 
and long ordering (aging at 450°С during 40000 h) was irradiated by 5 MeV electrons at 200°С [8]. Fig. No. 5 
demonstrates the increasing vacancy concentration when the electron fluence increases. When electron fluence 
equals ∼1,8х1022 m-2 the value of S- parameter for short ordered alloy reaches the saturation. It means that all new 
vacancies recombine with interstitials. The Ni-32Cr-1Mo alloy after aging at 450°С during 40000 h in irradiation 
process continues to accumulate non-recombined vacancies. 
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Fig. 4 The comparison of X-ray (331) -reflections of  
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Fig. 5 The dependencies of the S- parameter on electron 
fluence of Ni-32Cr-1Mo irradiated alloy at 200°С after 

aging at 300 (open circles) and 450°С (dark squares) during 
40000 h.[8] 

 
So the experimental results demonstrate the small influence of neutron irradiation on the short ordered alloys 

properties, particularly the Ni-42Cr-1Mo alloy. It is necessary to note the importance of obtained results, because 
the short order in crystal structure of alloys increase the recombination of vacancies and interstitials, which are 
formed under neutron irradiation.  
Discussion  

It has been established significantly higher stability of mechanical properties of the Ni-Cr base alloys with the 
comparison austenitic stainless steels after neutron irradiation. It has been shown that fcc - Ni-Cr - alloys (points 
from 4 up to 6 on Fig.1) have demonstrated the high irradiation stability depending  on position of configurational 
point of alloy composition. The alloys numbers from1 up to 6 (Fig.1) after quenching from 1000-1200 C were aged 
at 300 and 450 C during 40,000 hours. The microstructures of these alloys before irradiation are shown on Figures 1 
b - 1d. You can see that the alloy №1 has the long-range ordering structure, the alloy № 4 - short-range ordering 
structure whereas the alloy № 6 – disintegration structure. 

The alloys № 4 and № 6 were investigated after irradiationat the temperature of ∼350 °С in the reactor БОР-60 
up to ∼32 dpa. The total elongation of the alloy № 4 was three times more then the alloy № 6. So the existence of 
short-range ordering structure in alloy stabilized the mechanical properties under irradiation while two-phase 
structure of alloys destabilized theirs. On the other hand it is known that in the Ni-Cr system with increasing the Cr-
content from the Ni through stoichiometric composition of the Ni2Cr compound and further the enthalpy of 
formation (∆H) of FCC –phase increases from negative values (which is beginning the long-range order structure 
evolution) through zero (at xCr≈0,4 and T=723 K) up to positive values (which is beginning the formation of two-
phase structure) -(Fig. 7). 

Recently the sign-changing concentration dependence of the ∆H(x) at 0 K for ferromagnetic BCC - alloys of 
the Fe-Cr system have been obtained by different scientific groups [3-4] using the ab-initio calculations – Fig.6. It is 
necessary to note that calculated results for ferromagnetic alloys show substantial deviations from experimental data 
obtained by Muller and Kubashevski for BCC-alloys in paramagnetic state (blue curve on Fig.7). Thus, the 
calculated formation energy ∆Ef is negative for alloys of the Fe-Cr system for Fe-rich BCC - alloys, but it is positive 
at higher Cr concentrations. It is necessary to underline the cymbate concentration behavior of the mixing enthalpies 
dependences at 0 K for ferromagnetic states as the BCC- phase of the Fe-Cr for as the FCC-phase of the Ni-Cr 
systems. In other words in the both systems there are as composition fields with short-range ordering structure, 
which have irradiation stability, for as with two-phase structure, which have irradiation instability.  



So it is possible to formulate a hypothesis: the alloys of the compositions arranged near configurational point with 
the zero value of ∆H have a higher irradiation stability at moderate temperatures. It is important to underline that a 
optimal composition of high temperature irradiation stable alloy it is necessary estimate by coupling experimental 
and simulated research.  

  
Fig.6. The comparison ab-initio results obtained by asm 
Mirzoev et all. (2003) – blue points for as Olsson et all. 
(2003) and Wallenius et all. (2004) – rose points 
enthalpy of mixing for ferromagnetic state BCC –phase 
of the Fe-Cr system at 0 K 
 

Fig. 7. The experimental data 

 
Conclusion 

In work [7] was installed that anomalous stability (the part of curve ∆H(x), where ∆H(x)<0) the Fe-rich BCC 
solutions in Fe-Cr system is conditioned by influence of the magnetism on interatomic interactions Fe and Cr atoms. 
The research [12] was shown that with increasing the temperature relative part from magnetism on the total free 
mixing energy of BCC alloys of the Fe-Cr system decreases. Thereby, for development stable Fe-base alloys under 
irradiation follows to take into consideration that magnetism as the main factor for increasing of irradiation stability 
of alloys.  
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Introduction 
Development of new generation of nuclear reactors entailed need in new materials for the reactors. For example, 

materials for fuel cladding of the reactors must be more stable and withheld higher temperatures than Zr-based 
materials used in existing VVER reactors. Correspondingly, thermodynamic properties of the materials, and BCC –
alloys in the Fe-Cr system particularly, became of significant interest. Experimental data for mixing enthalpy for 
BCC –alloys in the Fe-Cr system were obtained under 1600 K temperature, when the alloys are paramagnetic. 
Unfortunately, such experiments are not feasible under lower temperature because diffusion slows down drastically 
as temperature is lowered. Thus, new approaches to obtain the thermodynamic parameters in range of temperatures 
applicable to the real world have to be found. Recently, numerous scientific works focused on modeling of BCC –
alloys in the Fe-Cr system. For BCC –alloys of the Fe-Cr system in a ferromagnetic state, the sign-change 
concentration dependency of mixing enthalpy under 0 K have been obtained by quantum-mechanical calculations 
[1-5]. Although presently quantum mechanical calculations are a sole mean to compute thermodynamic properties 
of metastable phases, they can be performed for equilibrium properties for 0 K temperature only. Use of these 
results to compute thermodynamic properties and phase diagrams of multi-component systems under higher 
temperature is quite problematic. To circumvent these limitations of ab-initio results, we have tried to integrate ab-
initio results into physical-empirical models. For example, the model links harmonic and anharmonic properties (in 
quasiharmonic approximation) to energetic characteristics of alloys calculated at 0K, that allows to calculate 
vibration part of thermodynamic properties of alloys under medium and higher temperatures. Our research applies 
developed early physical-empirical models to analysis and computation of thermodynamic properties of BCC – 
alloys in ferromagnetic state of the Fe-Cr system under wide range of temperatures and compositions. 

 
The short description of using physical-empirical models 

Solid solutions with BCC crystal lattice of the Fe-Cr system could be modeled as a system of non-interacting 
subsystems from point of view of statistic thermodynamic. Then, a statistic sum of the modeled system is equal to a 
product of statistic sums of non-interacting subsystems. This approach leads to equality between total free energy of 
the system and sums of free energies of various subsystems. 

We assume that this system could be modeled as a combination of independent subsystems, including: 1) a 
configuration part of free energy which describes an ion-subsystem, 2) the elastic part of free energy, which 
describes static distortion of crystal lattice of the solid solution induced by static displacement of ion-cores, 3)  
thermal contribution of an electron subsystem, 4) thermal contribution of a spin subsystem, 5) a vibration subsystem 
which includes harmonic and anharmonic constituents. Every of these subsystems contributes to the free energy of 
the system. Values of various contributions to free energy of the system could be calculated by means of 
experimental data for appropriate physical properties which are input characteristic of the model. 

The method for calculation of thermodynamic function of disordered solutions at paramagnetic state was 
suggested in work [6]. On basis of this method and adding in a thermal contribution of a spin subsystem to 
description of thermodynamic properties of BCC solutions of the Fe-Cr system at ferromagnetic state, we can 
describe the free energy of BCC solution as a function of composition (concentration of the second component - Cr) 
and temperature by formula (1). 

 
ΔG(x,T) = ΔHchem(x,0) + ΔGvibr(x,T) + ΔGel(x,T) + ΔGmag(x,T) + ΔGelast(x,T) - TSconf(x,0).          (1) 

 
Here ΔHchem(x,0) is chemical interaction energy of average size atoms under condition of alloy formation at 0 K; 

ΔGvibr(x,T) is free energy of crystal lattice vibrations; ΔGel(x,T) is free energy of thermally excited electrons;  
ΔGmag(x,T) is the thermal term of free energy which takes magnetic subsystems into account; ΔGelast(x,T) is the 
energy of elastic distortions of crystal lattice of the solid solution induced by the static displacements of ionic cores; 
Sconf(x) is a configurational entropy of completely disordered solid solution that is described by a model of ideal 
solution. 

To describe both thermodynamic of alloys and phase equilibrium in binary systems, we can, keeping with our 
general approach, turn from the free energy of solutions to free energy of mixing by virtue of an invariance of 
system of equilibrium equations in relation to linear transformation on composition at T=const. 

The vibration contribution to free energy was calculated as a sum of harmonic and anharmonic contributions. 
Harmonic contribution was described by Debye model, whereas anharmonic contribution was described by 
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quasiharmonic approximation. To approximate anharmonic contribution, we took into account that Debye 
temperature depends on volume through Gruneisen parameter, and the volume, in its own turn, depends on 
temperature through a volumetric thermal expansion coefficient. 

Thermal part of magnetic contribution to the free energy of the system was modeled by the Inden-Hillert-Jarl 
model, using Curie temperature and average value of magnetic moment as input parameters of the model [7-8]. 
Contribution of thermally exited electrons was accounted by a well-known expression using experimental data for 
electron specific heat coefficient. It should be noted, in principle the data can be obtained by quantum-mechanical 
calculations as well. 

In order to calculate the free Gibbs energy of BCC alloys, we collected experimental data for physical properties 
being parameters of our physical - empirical models from literature. Graphics of the properties (Debye temperature, 
electron specific heat coefficient [9-10], Curie temperature, average value of magnetic moment, volumetric thermal 
expansion coefficient, Gruneisen parameter) are shown in fig. 1- fig 2. 

Then, these approximated dependences on the composition of the physic properties were calculated. Then, some 
contributions and dependency of total free energy on the function of composition to BCC solutions of the Fe-Cr 
system for different temperatures were calculated. Analysis of contributions like ΔH(x,0), Gharm(x,T), Gmagn(x,T), 
Ganharn(x,T), Gel(x,T), Gelast(x,T) and their influence on a stability of BCC solutions of the Fe-Cr system was 
accomplished. 

 
The description of physical properties as input data for physical-empirical models 
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Fig. 1а. The ab-initio ΔН(х,0) according to [2]; calculated 

ΔGelast(x,0) and ΔHchem.(x,0). 
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Fig. 1b. The Curie temperature (Tc) and average value 

of magnetic moment (B0) of BCC phase. 
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When we attempted to input contributions to the free energy of BCC solution obtained by quantum mechanic 
calculations to our model, we obtained results that differ from experimental data. Calculated the critical point of 
immiscibility gap of BCC- phase reached the melting temperature that contradicts experimental phase diagram of 
the Fe-Cr system. Future analysis of results shown that this discrepancy appears because of large value of ab-initio 
calculated mixing enthalpy of ferromagnetic BCC solution at 0K [1-2,4]. Therefore, we made an assumption that 
ΔH(x,0) can be modeled as a sum of the chemical energy of formation of the alloy at 0K  - ΔHchem(x,0) and elastic 
energy ΔGelast(x,0), see fig. 1a. 

Concentration dependence of Debye temperature (see fig. 2a) was calculated using assessment values which were 
calculated by Lendeman’s criteria for the melting of BCC- solution of the Fe-Cr system. The concentration 
dependence of electron specific heat coefficient was approximated using experimental data from [9-10]. The linear 
thermal expansion coefficients of the BCC-solution of Fe-Cr alloys accounting for its thermal dependence were 
approximated using experimental data from [11-14], see fig. 2b. Concentration dependence of Curie temperature 
and average value of magnetic moment for BCC alloys of the Fe-Cr system (see fig. 1b) were taken from [15-17]. 
 
The computational results 
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Fig 3. Concentration dependence of free energies G(x,T) – 
curve 1, and its  components: 
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All components of total Gibbs energy of ferromagnetic BCC- solutions of the Fe-Cr system (see formula (1)) 
were calculated on basis of the above mentioned physical–empirical models. They are shown on fig. 3a, 3b and 3c 
for temperatures 0K, 300K and 700K correspondingly. The phase immiscibility gap evolution of the BCC- solution 
of the Fe-Cr system can be quality estimated by those graphs.  

 
Conclusion 

The analysis of calculated results of different parts of total free Gibbs mixing energy of BCC – ferromagnetic 
solutions of the Fe-Cr system demonstrated that magnetic part of free energy plays dominant role in stabilization of 
Fe-rich BCC – alloys in the range of low and medium temperatures, whereas electronic part of free energy plays 
dominant role in stabilization of Cr-rich BCC – alloys in the range of high temperatures. 
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Introduction 

In paper [1] were received general equations between the second derivatives to equilibrium Gibbs energy (GE) of 
multi-component of the closed systems on one/two-phase boundaries of the α⁄α+β−type of phase diagram (PD). Later in 
[2-3] were derived relationships for jumps of all second derivatives of GE of binary systems on one/two-phase boundary 
of the α⁄α+β type, as follows, namely, specific heat,  the thermal expansion coefficient, partial enthalpies and entropies 
of components,  isothermal compressibility, concentration slope of the volume ( the partial volumes of the  first and 
second components), as well as the second derivative of Gibbs energy of α-phase on composition for the T-P-x PD, 
where x – mole fraction of the second component, T is temperature and P − pressure. In [4] was shown that between 
jumps of some derivatives of second order to EGE (specific heat, compressibility and  the thermal expansion coefficient) 
on one/two-phase type boundaries of binary systems exists intercoupling, which was is earlier received by P. Erenfest  
[5]. Recently in works [6-7] was shown that determinant of the Hessian matrix of GE on with respect to all arguments 
(T-P-x) is an continuous function on the α⁄α+β type of phase boundaries  of T-P-x PDs though all elements of matrix are 
an discontinuous functions on the α⁄α+β − type of phase boundaries T-P-x phase diagram. 

In the persisting work have been proved that determinants of as Hessian matrix all algebraic minors of the Hessian 
matrix of GE with respect to its arguments are an continuous functions on the α⁄α+β −type of phase boundaries of the  T-
P-x PDs.  Proved equivalence of the generalized Erenfest’s equations and relationships to continuity of the determinant 
of the Hessian matrix of GE of two-component systems on one/two-phase boundaries of T-P-x PDs and its determinants 
of the algebraic adjuncts.  
The continuity of determinants of Hessian matrix from equilibrium Gibbs potential and its algebraic cofactors 
Let us take down difference of values for determinant the Hessian matrix of GE of binary system between two-phase and 
single-phase states of the alloys, located on different sides of α⁄α+β −type of phase boundaries of the  T-P-x  PDs  
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In relationship (1) element matrixes are a values, for instance, the first element 
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equals  difference corresponding to functions (for instance, isobaric specific heat) taken in two-phase area in vicinities 
one/two-phase boundary of the  T-P-x phase diagrams and subtracted similar function computable in vicinities of the 
same boundary, but on the part of single-phase area. Account got in [2-4] relationships for jumps of specific heat 
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As example on Fig.1 optimized PD of the Al-Si system are presented, got at using CALPHAD - method, as well as 
fragment this PD for Si-rich alloys. Besides the temperature dependencies of specific heat for alloys, compositions 
which equal 99,98 at.% Si and 99,99 at.% Si, are presented on Fig.1 c and d. From analysis these dependencies follows 
that values of jumps for specific heat on liquidus equal the giant of values, approximately on 3 orders exceeding 3R! 
Let as shall substitute equations (3) instead of elements of the matrix (1), as a result of calculations we shall get 
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Thereby, the relationship (4) proves continuity of the determinant of the Hessian matrix from equilibrium of the Gibbs 
potential of two-phase binary systems on one/two-phase boundary of the T-P-x phase diagram. 
Let as calculate determinants a main algebraic additions of the Hessian matrix 

,
211 11

2

  
det{ A  A } det 0

        

T x x

x x

VV
x

V G
x x

α α βα α β
α α

α α
α β α

α α β α

α α

χ

∂
∂

→ +→ +

+
→ +

∂⎡ ⎤⎡ ⎤− ⎢ ⎥⎢ ⎥⎣ ⎦ ∂⎣ ⎦
− = =

∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

 
     (5) 

[ ]
,  

222 22

2

/T              
det{ A   A  } det 0

              

P x x

x x

SC
x

S G
x x

α α β
α α β
α α

α β α
α α β α

α α

∂
∂

∂ ∂
∂ ∂

→ +
→ +

+
→ +

⎡ ⎤− −⎢ ⎥⎣ ⎦
− = =

⎡ ⎤− −⎢ ⎥⎣ ⎦

   (6) 

[ ] [ ]
[ ] [ ]33 33

 /T             ( )    
det {       } det 0.

( )    ( )  

P Vx x

V Tx x

C V x
A A

V x V x

α α

α α

α α β α α βα α
α β α

α α β α α βα α α α

α

α χ

→ + → +

+ =
→ + → +

−
− =

−
    (7) 

Generalized Erenfest relationships 



From equation (7) we directly get Erenfest equation (8) 
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Fig.1a Fig.1b 

  
Fig.1c Fig.1d 

Fig.1. The optimised phase diagram of the Al-Si system (fig.1a and b) and  predicted calculated temperature 
dependensies of specific heat for alloys with copositions equals 99,98 at.%Si as for as 99,99 at.%Si (Fig.1c and d) 
 
which links the jumps of isobaric specific heat, isothermic compressibility and  the volume thermal expansion 
coefficient. The first equation (8) was obtained by Erenfest [5], but under postulation that he considered phase the 
transition second mode. Then as in [2-4, 7] and here this equation follows from condition of continuity of the 
determinant of one of the algebraic additions (7) of the Hessian matrix from equilibrium of the Gibbs energy on  α⁄α+β 
−type of phase boundary of T-P-x phase diagram.  
Other similar relationships followed from conditions of continuity determinant cofactors (6) and (7) 
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Relationships (8) - (10) we shall name as generalised Erenfest equations on α⁄α+β −type of phase boundaries of the  T-
P-x phase diagrams of the binary systems. The similar relationships we can be received from equality zero remained 
three determinants of the differences of the algebraic cofactors of the Hessian matrix between two-phase and single-
phase states alloys on on α⁄α+β −type of phase boundary T-P-x phase diagram 
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From here follow three additional generalised Erenfest equations  
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Conclusion 
Thereby, we have proved the continuity of the determinant of the Hessian matrix from equilibrium of the Gibbs 

potential  on α⁄α+β −type of phase boundaries of the  T-P-x phase diagrams of the binary systems and all its algebraic 
cofactors on one/two-phase boundary of the T-P-x PD. All generalised Erenfest’s equations (8)-(10), (12)-(14) are  
immediate from conditions of continuity determinant of the Hessian matrix and its algebraic cofactors on α⁄α+β −type of 
phase boundary of the T-P-x PD of closed binary systems.  

The last statement demonstrates equivalence of the generalised relationships Erenfest’s equations and continuity of 
the determinant of the Hessian matrix from equilibrium of the Gibbs potential  on α⁄α+β −type of phase boundaries of 
the  T-P-x phase diagrams of the binary systems and its algebraic cofactors. However, stated method, unlike Erenfest’s 
derivation [5], is directly generalised on event the n-component systems at n>2. Herewith considering that partial 
derivatives on composition from entropy, volume for binary system are changed on gradients on vector of compositions, 
but the second derivatives from Gibbs energy replace by square matrix, which element are all second derivatives from 
Gibbs energy on independent concentrations of components of the n-component closed system. Herewith independent 
concentrations of components of the n-component closed system are an contravariant rectangular components of 
covariant basis, basis vectors which coincident with ribs of (n-1) - dimensional regular simplex of compositions for 
closed n-component system.  
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Introduction 

The σ− phase is present in 43 binary systems and also many three- and more component systems. Sigma- phase is 
generated between various transient elements (Cr, V, Fe, Ni, Mn and etc.). The σ−phase is thermodynamic stable only 
for one pure component – uranium (β− phase) and metastable for β−Ta.  The lattice of  σ− phase is consisting from 5 
sub-lattices (thirty of atoms, which are having different of coordination numbers 12, 14 and 15). At last ten years a 
σ−phase was subject of modeling by quantum-mechanical calculations (Havrankova et all. [1],  Houserova et all [2]). ). 
It was applied for calculation of energy cohesion and mixing enthalpy at 0°K for order complexes. And only in work [3] 
was obtained calculation for influence temperature on distribution atoms of components for σ−phase in the Re-W 
system by using Gorsky – Bragg – Williams approximation. 

In this paper was obtained three- sublattice model (3SLM) for description of equilibrium distribution of atoms of the 
components into σ−phase depending on composition and temperature and modeling of σ−phase in the Fe-Cr system. 
The formulation of the three sublattice model 

According to 3SLM for the real structure of σ−phase A2
12B4

15C8
14D8

12E8
14  (including 5 sublattice) was 

approximated by 3 sublattices. Every from model sublattices are filling atoms of two components with coordination 
numbers (12, 14 and 15). 
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where energetic parameters 3SLM are equal 
12 12 2 12,12 12,12 14 12 2 12,14 14 2 14,12
12 1 2 12 1 26 ( ) ,  12 ( ) 9 ( )E a E E E a E a Eδ δ δ δ δ δ⎡ ⎤= ⋅ + = ⋅ + ⋅⎣ ⎦

15 12 2 12,15 15 2 15,12
12 1 26 ( ) 6 ( ) ,E a E a Eδ δ δ= ⋅ + ⋅

 

,  
12 14 2 14,12 12 2 12,14 14 14 2 14,14 14,14 15 14 2 14,15 15 2 15,14
14 1 2 14 1 2 14 1 29 ( ) 12 ( ) ,  15 ( ) ,  4 ( ) 8 ( ) ,E a E a E E a E E E a E a Eδ δ δ δ δ δ δ δ δ⎡ ⎤= ⋅ + ⋅ = ⋅ + = ⋅ + ⋅⎣ ⎦    
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The materials balance condition described by equation (2) 
xyayaya ⋅=++ 3015

2
1514

2
1412

2
12 ,    (2) 

where x  is total composition of second component of the Fe-Cr binary system. - (i =12,14,15) are fraction of the 
first or second components in different model sublatties for the σ− phase.  

ii yy 21 ,

Methodology. 
Account equation (2) the functional of mixing Gibbs energy of σ− phase dependence on external arguments (total 
composition of second component and temperature) and independent intrinsic degrees of freedom ( ). The 
equilibrium values of independent intrinsic 

15
2

12
1 , yy

degrees of freedom are the roots of set of equation of state (SES) – (3a) 
when the local stability criterion (3b) is fulfill: 
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- at fixing total composition of second component and temperature. 
When total composition of second element is changed at fixing value of temperature then solution of equations set – 
(3a) describe the concentration dependences of distribution atoms of second component between model sub-lattices of 
σ− phase. It is necessary note the first that equations in set (3a) are transcendental equations, the second it is not general 
mathematic methods for solution transcendental equations. So original method for solution transcendental equations set 
(3a) was been created. The computer program for numerical realization of original method solution of SES (3a) was 
been developed. The development 3SLM, algorithm and computer program was applied for modeling distribution of the 
Fe and Cr atoms between model sublattice of σ−phase depending on composition and temperature.  
The selection of starting energy parameters of model. 
For calculation of parameters energy of 3SLM was constitute set of equations for free mixing Gibbs energies of the 
σ−phase (relatively of metastable σ−phases of pure components) for compositions of σ−phase – base solution, which 
equals with compositions ordered complexes A2

12B4
15C8

14D8
12E8

14 – type for σ− phase (see table 1). In the result there 
was obtained the set of relationships (2) between energetic parameters of 3SLM and results obtained by ab-initio 
calculations of energies of formation for A2

12B4
15C8

14D8
12E8

14 – type of ordered complexes [1]. Thus was to get out of 
limitations as quantum-mechanical calculations of formation energy for full ordered complexes only at 0°К for as 
phenomenological models (many number of energetic parameters, impossibility of description atoms of components for 
sublattice of σ−phase) for description of thermodynamic properties of alloy with σ−phase structure.  
 
Table. №1 The data of quantum-mechanical calculations for 0 К of Cr-Fe system [1]. 
The types of 
ordered 
complexes 

The values of fractions of the first and second components in different model 
sublattices for the σ− phase 
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According table № 1 was obtained system of equation for searching of starting parameters of σ− phase model  (for 0 K)  
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    (4) 

Solving of linear equations set (4) relatively energetic parameters of 3SLM was obtained the next value (see table 2) 
Accordingly 3SLM – equation (1) the number of energetic parameters equals nine. Obviously that solution of linear 
equations set (4) let us obtained eight energetic parameters of 3SLM. So the nine of unknown energetic parameter was 
been calculates by fitting to critical point of metastable part of miscibility gap of BCC-solid solutions of the Fe-Cr 
system [5]. The calculated values of energetic parameters of 3SLM for σ− phase were presented in table 2. 



 
Table № 2 The data of  energies parameters of model for σ−phase (Joule/mole) 

650012
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Results. 
There were obtained the distribution of iron atoms in the Cr-Fe system between model sub-lattices of σ-phase at 
different values of temperatures (see fig.1) into T=300÷1100 K. Comparison between calculated results and experiment 
data was shown a good agreement.There was obtained a satisfactory agreement between calculation and experimental 
data for 300, 700, 1000 and 1100°К (see fig.1).  

The distribution of atoms between sub-lattices of sigma-phase 
at Т=300 К
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The distribution of atoms between sub-lattices of sigma-
phase at Т=700 К
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a) b) 
The distribution of atoms between sub-lattices of sigma-

phase at Т=1000 К
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The distribution of atoms between sub-lattices of sigma-phase 
at Т=1100 К
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ution of atoms between sub-lattices of σ-phase of Cr-Fe system  at Т=300 K (a), 700 K (b), 1000 K 
), 1100 K (d). 

. 3. 

ium between σ- BCC- phases we used stability parameters for pure Fe and Cr obtained by Sluter [5]. 

 for 
ordered complexes with σ- crystal structure at 0 K and statistical thermodynamic model for σ-phase into wide field 

c) d) 
Fig. 1 The distrib
(c
 
After calculated equilibrium distribution atom of component between model sub-lattices of  σ− phase we obtained 
minimizing free Gibbs mixing energies of intrinsic degree of freedom as concentration functions of composition at 
different values of temperature. For example calculated free Gibbs energies mixing of intrinsic degree of freedom as 
concentration functions for σ− phase as for as BCC – phase  at T=300 and 1000 K were presented on Fig.2.In the next 
step the phase equilibrium between σ- and BCC- phases of the Fe-Cr system was calculated in to 800-1100 K – Fig
It is necessary note that calculated σ-phase has homogeneity field limited by blue triangles (fig. 3). The calculated 
phase equilibr
Conclusion. 
Developed model was allowed coupling two scientific levels: namely the creation of bridge between ab-initio results



Graphic of dependence of Gibbs energies sigma 
and BCC phases as function of composition (x) 

for Т=300К
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Graphic of dependence of Gibbs energies ? and 
BCC phases as function of composition (x) for 

Т=1000К
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Fig.2 Concentration dependences of free Gibbs energy mixing for BCC (blue curve) and Sigma (red curve) phases of 
the Cr-Fe system at T=300 K (left ) and 1000 K (right). 
 

The fragment of BCC-Sigma equilibrium of Fe-Cr system

800

850

900

950

1000

1050

1100

1150

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

X --> (Cr)

T,
 K

BCCBCC

σ
σ+BCC σ+BCC

 
Fig. 3 The fragment of BCC-Sigma equilibrium of Fe-Cr system 
composition and temperature. That approach was allowed to link three different kinds of experimental data:  

1) Structural data obtained by neutron and X-ray investigations (occupied different sublattices of crystal structure 
of chemical compounds with homogeneity field); 

2) Thermodynamic properties for solution on base chemical compounds with crystal structure consisting many 
sublattices as function composition and/or temperature; 

3) Phase equilibriums between different phases as disordered solution for as chemical compounds (with crystal 
structure include many sublattices) with homogeneity field. 
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The greatest success of Thermodynamics throughout the 20th century has been in its concepts and 
equality equations. Inequalities are apparently less practical than equalities. The former only talks about 
limits and limits in evolution show tendencies. There is no certainty about the final state. On the contrary, 
considering systems in equilibrium, as Classical thermodynamics do, is quite comfortable. We become 
pretty sure about the properties of the system. All intensive properties of the system are homogeneously 
well defined in any part of it. The departure of equilibrium means that everything becomes ill defined and 
insecurity in the analysis is intrinsic. Therefore, the Thermodynamics of irreversible processes (Prigogine, 
1947) started from linear systems at steady non-equilibrium states instead of from systems far from 
equilibrium. Ecosystems are among the most complex energy systems. Those systems use energy to 
survive far from thermodynamic equilibrium and organize themselves in a way that yields the highest flux 
of useful energy and the most exergy stored in the system, (Jorgensen, 2000). The complexity of these 
systems is so great that the laws of observed behaviour are only tentative and provisional. 
 
In other words, scientists needed long time to understand the Second Law inequality that Clausius 
formulated hundred and sixty years ago as the "Die Entropie der Welt strebt einem Maximum zu". First 
they exploited the equilibrium properties of entropy and related magnitudes, and then used the Second 
Law to see the limits and the direction of processes. With that, they envisaged the arrow of time and 
irreversibility as a philosophical message of death and destiny. The first steps of analyses of departures 
from equilibrium gave birth to new ideas about evolution, stability, attractors, evolutive bifurcations and 
dissipative structures. Now, scientists working on systems far from equilibrium, try to explain concepts 
such us development, growth, behaviour, ascendency and self-organization to maximize the degradation 
of exergy. 
 
Thermodynamics is a phenomenological science, i.e. a black box theory. It does not describe the 
mechanisms by which systems behave. It only advises about tendency. It tells us which states are allowed 
and which are not. This analysis is close to Economics, it only precisely predicts what already happened. 
Prediction is not determinism. It is a selection of possible scenarios and the discarding of impossible ones. 
Consider, for instance, the evolution of the planet because of human action. It is impossible to predict 
neither the state of the atmosphere, hydrosphere nor of the lithosphere in the next hundred years. We can 
only do models and guess what is likely to happen if tendencies maintain as they are. And these models 
will never be purely thermodynamic. 
 
However Thermodynamics has not been sufficiently exploited at the planetary level. The planet evolution 
can be considered as a complex evolutionary ecosystem. We must recognize that mineral resources like 
forests or glaciers have exergy and their state should be assessed for a careful husbandry of the planet. In 
other words, and as prof. Andresen says “Thermodynamics is far from being a complete polished subject, 
useful only as a tool to evaluate chemical and thermal processes. On the contrary, Thermodynamics is 
vibrant with new ideas and methods, receiving inspiration from other fields of science as well as 
providing inspiration to such other fields, e.g. general optimization theory, fluid dynamics, and ecological 
modelling.” 
 
The main message of this paper is that Second law analysis can be universally applied to evaluate the 
mineral endowment of the Earth’s crust. Exergy is a tool that can be applied no matter if dealing with 
materials, fossil fuels, water, gases or air. This fact has been recognized by a significant number of 
ecological economists, such as Georgescu-Roegen (1971), but very few scientists have dared to put real 
numbers on it and no one at a global scale. Recognition should be also owed to Ayres and Nair (1974), 
Szargut (2005), Odum (1996) or Wall (2005), among others. 
 
The irreversibility concept tells us that sooner or later everything will be degraded with the maximum 
possible generated entropy. And the Second Law is present in all natural processes fixing their limits and 



direction. Even life, which looks completely antientropic, is a consistently dissipative process. Human 
beings can accelerate or slow down those irreversible and unavoidable processes. However, the 
irreversibility concept assures that we are approaching a degraded planet of maximum entropy and hence 
with the absence of resources essential for life. This simple fact allows us to understand better Nature. 
The knowledge of the “end of the planet” is fundamental for managing efficiently the finite amount of the 
Earth’s non-renewable resources. This will play a key role in understanding the Thermodynamics of far 
from equilibrium systems. 
 
Irreversibility plays another important key role for understanding the degradation processes of Nature: it 
is the root of the physical cost and thus it connects Thermodynamics with Economics. To such an extent 
that a new science has been created: Thermoeconomics (see a historical overview in Valero, 2004). Most 
analysts agree that exergy is an adequate thermodynamic property to which allocate cost because it 
accounts for energy quality. Once the reference environment is defined, exergy is the thermodynamic 
function of state which makes possible to formulate the equivalence between different energy and/or 
matter flow streams of a system. Thermoeconomic analysis allows to value resources with a single unit of 
measure (the exergy costs) and in an objective way far removed from market distortions or currency 
speculation. 
 
Joining the model of a degraded Earth’s crust with the exergy resource accountability system based on the 
thermoeconomic analysis, immediately leads to the “exergy countdown” proposed in this paper. The 
exergy countdown is based on the fact that there is a measurable amount of exergy resources on Earth, 
which are being depleted by human action. Furthermore, as demonstrated in the study, using exegy, 
mineral extraction behaves similar to the well known King Hubbert’s peak for fossil fuel resources. This 
way, the exergy countdown of the planet allows visualizing and monitoring the exergy evolution of 
mineral resources of the Earth and estimating when each resource will reach the maximum level of 
degradation. Since the accounting unit is exergy, the analysis can be performed to single or aggregated 
resources. Furthermore, all studied substances can be represented in a single diagram. The results are 
striking: at the actual rates of extraction, most of the strategic metal resources will reach the peak before 
this century and in some cases even before fossil fuels (see Fig. 1). 
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Fig. 1: Exergy countdown of the main minerals extracted on Earth 
 
 
 
This paper demonstrates that Thermodynamics can play a key role in the management of natural 
resources and in the awareness that we are quickly approaching a crepuscular planet. The latter will never 
be determined exactly, but it can be gradually better delimited just by applying the second law 



evolutionary theories. In short, it is not the same to perceive that time passes than to have a watch and 
measure exactly how many minutes are left until the end of the day. The aim of this study is to pave the 
way to precisely account the time to reach a degraded planet. 
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ABSTRACT

There are two old paradoxical issues in relativistic generalisations of thermodynamics. The first one is related
to the relativistic interpretation of the thermodynamic quantities and is related to the hypothetical transformation
properties of the temperature. According to the three most important opinions the temperature of a moving body
can appear colder (Einstein-Planck), appear hotter (Ott) or is the same (Landsberg) as the temperature measured
by an inertial observer.

The second important problem is related to heat conducting and dissipative fluids. There the first and most
straightforward generalization of the Navier-Stokes-Fourier system is due to Eckart (1940). But the homoge-
neous equilibrium of an Eckart fluid is violently unstable (Hiscock and Lindblom, 1985) due to the relativistic
modification of the Fourier heat conduction law, that contains the acceleration of the fluid. The suggested exten-
sions (the most popular is the M̈uller-Israel-Stewart theory) can suppress this generic instability. However, the
price we pay is a set of additional material parameters, that should depend on the thermodynamic state in a very
particular way according to the stability conditions.

We argue that the two problems are not independent. An investigation of the fluid equations by rigorous thermo-
dynamic methods - Liu procedure for first-order weakly nonlocal constitutive state space - leads to a modified
simple form of the internal energyε of relativistic fluids [1, 2], that can be expressed by the local rest frame
energy densitye and momentum densityqa as:

ε =
√
uaT abTbcuc =

√
e2 − qaqa.

HereT ab is the energy-momentum density andua is the velocity field of the fluid. One can show that the homo-
geneous equilibrium of the corresponding relativistic dissipative fluid is linearly stable due to the concavity of
the entropy and the positivity of the heat conduction and diffusion coefficients and the viscosities [3] .

In the presentation we will show, that due to the corresponding equilibrium thermodynamic relations the mean-
ing of different thermodynamic temperatures (Enstein-Planck, Ott and Landsberg) can be well interpreted and
understood. Causality and hyperbolicity questions will be mentioned, too.
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In this contribution we show the canonical quantization procedure of a class of nonlinear transport 

equations to describe heat transfer in nano-scaled conductors. Non-linearity is considered through the 

assumption that the thermal conductivity depends on the size of the system. The Lagrangian density 

function is written in terms of a potential field which gives all the physical information on the measurable 

temperature. The potential field together with the thermal conductivity is expanded in Fourier series. The 

quantization procedure is then carried out in the Fourier coefficients space and creation, annihilation and 

number operators with their commutation properties are introduced. This allows us to study the energy 

level structure of heat conductors at low temperature. We illustrate the formalism with the example of a 1-

D conductor with size lengths in the scale of nano-meters. This formalism constitutes a complementary 

point of view of heat transfer in quantum devices which may be useful in nano-devices at low temperatures. 
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The modern results of thermodynamics are often difficult to get widely accepted 

because in teaching thermodynamics a number of ideas not firmly established are 

taught, even spiced up with contradictions or patterns of thinking leading to 

contradictions sooner or later. One important circumstance is that heat is poorly 

defined. And usually all other ideas are introduced basing on it. The most 

widespread idea of heat applies for processes starting and ending in equilibriums 

and are used as if it were of general validity. It is worth studying if the separation 

of energy transfer into heat and work has been established with a satisfactory 

certainty. The answer is not. On a simple example, we show that the uncertainty 

of the idea of heat and work does not cause any severe problem in non-

equilibrium thermodynamics; proper modeling can lead to a correct model even if 

modeling heat is completely spoiled. 

 

We have been taught the idea of heat and work since the early years of school. 

The theory of heat was based on hotness and coldness of every day bodies; the 

temperature was established and the amount of heat was explained by the equation 

of calorimetry. The work was introduced in mechanics and was generalized in 

electricity. The definition of energy was the ability to perform work. 

 

We had no problem when the idea of energy was generalized; the heat was 

involved into energy; and the first law of thermodynamics was based. We did not 

take care of the consequence of the generalization that the energy was not the 

ability to perform work any longer. The conservation rule has been paid for with 

the original definition. The above would have caused no problem if the definition 

of heat and work had been exact. In some textbooks of thermodynamics the heat is 

defined with the part of the transferred energy that is not work. But what is work? 

I elucidate the question on the example of electric work. We have known for long 

that the electric work equals the product of the voltage and the electric charge 

having passed; and the time integral of the product of voltage and current if the 

voltage is changing; 

 

       (1) 

 

The formula is valid for both direct and alternating current. If the voltage changes 

arbitrarily we are faced with some difficulty. We suspect and a detailed analysis 

also shows that the above integral is rather heat if the voltage is Nyquist noise. If a 

hot conductor is attached to an ideal transmission line the work obtainable with a 

bridge obeys Carnot's formula. Nevertheless, noise is usually treated with 

statistical methods, the phenomena were discovered and are detected with 

macroscopic observations.  

 

Another puzzling example is the electromagnetic radiation. A monochromatic 

wave performs work — e.g. on the aerial of a TV receiver — but a real wave is 



never strictly monochromatic. On the other hand, the thermal radiation is 

obviously heat even if it is within a narrow frequency band cut by a 

monochromator. The same uncertainty emerges when the internal energy balance 

is established.  

 

Assume an electrical conductor in an electromagnetic field. The equation usually 

reads 

      (2) 

 

where rho is the density, U  the specific internal energy, Jq the heat current 

density, E the electric field strength, j the electric current density, and r is the so 

called heat supply. No mechanical motion is assumed. The source terms on the 

right hand side are the power of the field and the heat given the body by the field 

of thermal radiation in unit volume, respectively. Keep in mind that the heat 

radiation is an electromagnetic field, consequently, the term Ej contains the 

absorbed heat; the appearance of the heat supply on the right hand side is an 

explicit error unless E and j are interpreted as apart from the radiation field. The 

separation of the thermal and non-thermal parts of the electric field strength and 

the current is not without arbitrariness. The above form of the internal energy 

balance includes the separation of the field and the material staying at the same 

place, which may be problematic again. Regarding the volume elements of the 

reality — material and field together — the form 

        

     (3) 

is more correct, in which S is Poynting’s vector; 

  

         (4) 
 

The dilemma of what is heat is also present. The quantity Jq has to be declared as 

heat flow apart from the radiating part or E and H as apart from the radiation? We 

can not help but concluding to that the distinction between heat and work is not 

always clear at all.  

 

Nevertheless, one of the foundation stones seems loose, removing it does not 

destroy the building of non-equilibrium thermodynamics as you can see in the 

book of Giftopoulos and Beretta. On the other hand, even if the definition of heat 

fails sometimes and the heat flow in the energy balance may be wrong, proper 

modeling of the entropy current and the constitutive equations are able to lead to 

correct results. 
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Endoreversible Thermodynamics

Endoreversible thermodynamics is a powerfull tool for the optimization of irreversible ther-
modynamic processes. Because of its well defined structure consisting of only few different
elements it is possible to break down complex irreversible thermodynamical systems into sub-
systems for which calculations are much simpler.

In general endoreversible systems are networks of reversible subsystems that exchange energy.
All the irreversibilities of the system are located at the interactions between the subsystems.
Thus the reversible subsystems can be treated with equilibrium thermodynamics. Another as-
pect of endoreversible systems is that each interaction consists of two fluxes, since the energy
flux is always accompanied by a flux of an extensive quantity (extensity), e.g. entropy or
particle flux, that acts as a carrier of the energy.

The reversible subsystems can be divided into two main categories: reservoirs and engines.
While reservoirs store energy and therefore act as sources or sinks, engines only transform
energy, for instance from thermal into mechanical energy. Thus, for engines a set of balance
equations can be set up. The sum of all energy fluxes entering and leaving an engine has to
equal zero and for each extensity the sum of all extensity fluxes has to equal zero as well.

The interactions between the engines and reservoirs are characterized by transport equations
for energy and the accompanying extensity. The two fluxes are related by a corresponding
intensive quantity.

ETA-Graphics

ETA-Graphics (where ETA is an acronym for Endoreversible Thermodynamics Application)
is a graphic based interface to endoreversible thermodynamics that uses the fact that endore-
versible systems have such a well defined structure. It enables the user to construct endore-
versible systems using engines and reservoirs and defining the interactions between these sub-
systems by entering transfer equations. The application guides the user with dialogs and lists
from which certain properties can be chosen.

The logic of endoreversible systems is implemented, i.e. the application is capable of setting

1



up the balance equations and solving the resulting equation system. To do so Wolfram Mathe-
matica is used. Furthermore the efficiency and power output of engines can be calculated and
plotted.

ETA-Graphics is meant to support the user in creating endoreversible representations of sys-
tems and analyzing them especially with regards to efficiency and power output.
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Rigorous and General Definition of Thermodynamic Entropy.

Part I: Basic Concepts and Energy

Enzo Zanchini∗ and Gian Paolo Beretta†

INTRODUCTION
In traditional expositions of thermodynamics, entropy is defined in terms of the concept of heat, which in turn
is introduced at the outset of the logical development in terms of heuristic illustrations based on mechanics.
For example, in his lectures on physics, Feynman [1] describes heat as one of several different forms of energy
related to the jiggling motion of particles, a form of energy which really is just kinetic energy. Tisza [2] argues
that such slogans as “heat is motion,” in spite of their fuzzy meaning, convey intuitive images of pedagogical
and heuristic value.
There are at least three problems with these illustrations. First, work and heat are not stored in a system: each
is a mode of transfer of energy from one system to another. Second, concepts of mechanics are used to justify
and make plausible a notion—that of heat—which is beyond the realm of mechanics. Indeed, as pointed out by
Hatsopoulos and Keenan [3], without the Second Law heat and work would be indistinguishable. Third, heat
is a mode of energy transfer between systems that are very close to thermodynamic equilibrium, so that any
definition of entropy based on heat is bound to be valid only at thermodynamic equilibrium.
The first problem is addressed in some expositions. Landau and Lifshitz [4] define heat as the part of an energy
change of a body that is not due to work done on it. Guggenheim [5] defines heat as an exchange of energy
that differs from work and is determined by a temperature difference. Keenan [6] defines heat as that which
transfers from one system to a second system at lower temperature, by virtue of the temperature difference,
when the two are brought into communication. Following Guggenheim it would be possible to state a rigorous
definition of heat, with reference to a very special kind of interaction between two systems, and to employ the
concept of heat in the definition of entropy [5]. However, Gyftopoulos and Beretta [7, 8] have shown that the
concept of heat is unnecessarily restrictive for the definition of entropy, as it would confine it to the equilibrium
domain. Therefore, in agreement with Ref. [7], we will present and discuss a definition of entropy where the
concept of heat is not employed.
Other problems are present in the traditional scheme for the definition of entropy [5, 6, 9]: many basic concepts,
such as those of system, state, property, isolated system, environment of a system, adiabatic process are not
defined rigorously; the unnecessary concept of quasistatic process is employed; it is assumed implicitly that the
quantity of heat exchanged in a cycle between a source and a reversible cyclic engine is independent of the
initial state of the source.
In this paper, a rigorous and general definition of entropy is presented, which is based on operative definitions
of all the concepts employed and involves neither the concept of heat nor that of quasistatic process; it applies
to both equilibrium and nonequilibrium states and considers also systems with movable internal walls and/or
semipermeable walls, with chemical reactions and/or external force fields, with small numbers of particles. In
Part I, the definitions of the basic concepts and of energy are presented. In part II, entropy and thermodynamic
temperature are defined and the principle of entropy non-decrease is proved.

BASIC DEFINITIONS
Constituents, amounts of constituents. We call constituents the material particles chosen to describe the
matter contained in any region of space R, at a time instant t. Examples of constituents are: atoms, molecules,
ions, protons, neutrons, electrons. Constituents may combine and/or transform into other constituents according
to a set of model-specific reaction mechanisms. We call amount of constituent i in any region of space R, at a
time instant t, the number of particles of constituent i contained in R, at time t.
Region of space which contains particles of the i-th constituent. We will call region of space which
contains particles of the i-th constituent a connected region Ri of physical space (the three-dimensional Euclidean
space) in which particles of the i-th constituent are contained. The boundary surface of Ri may be a patchwork

∗Università di Bologna, Italy, enzo.zanchini@unibo.it
†Università di Brescia, Italy, beretta@ing.unibs.it
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of walls, i.e., surfaces impermeable to particles of the i-th constituent, and ideal surfaces (permeable to particles
of the i-th constituent). The geometry of the boundary surface of Ri and its permeability topology nature
(walls, ideal surfaces) can vary in time, as well as the number of particles contained in Ri.
Collection of matter, composition. We call collection of matter, denoted by CA, a set of particles of
one or more constituents which is described by specifying the allowed reaction mechanisms between different
constituents and, at any time instant t, the set of r connected regions of space, RRRA = RA

1 , . . . , RA
i , . . . , RA

r , each
of which contains nA

i particles of a single kind of constituent. The regions of space RRRA can vary in time and
overlap. Two regions of space may contain the same kind of constituent provided that they do not overlap.
Thus, the i-th constituent could be identical with the j-th constituent, provided that RA

i and RA
j are disjoint.

Comment. This method of description allows to consider the presence of internal walls and/or internal semiper-
meable membranes, i.e., surfaces which can be crossed only by some kinds of constituents and not others. In
the simplest case of a collection of matter without internal partitions, the regions of space RRRA coincide at every
time instant. The amount ni of the constituent in the i-th region of space can vary in time for two reasons:
matter exchange; reaction mechanisms.
Compatible compositions, set of compatible compositions. We say that two compositions, n1A and
n2A of a given collection of matter CA are compatible if the change between n1A and n2A or viceversa can
take place as a consequence of the allowed reaction mechanisms without matter exchange. We will call set of
compatible compositions for a system A the set of all the compositions of A which are compatible with a given
one, n0A. We will denote a set of compatible compositions by the symbol (n0A, νννA), where νννA is the matrix of
the stoichiometric coefficients.
External force field. Let us denote by F a force field given by the superposition of the gravitational field G,
the electric field E and the magnetic field H. Let us denote by ΣA

t the union of the regions of space RA
t in which

the constituents of CA are contained, at a time instant t, which will also be called region of space occupied by
CA at time t. We call external force field for CA at time t, denoted by FA

e,t , the spatial distribution of F which
is measured at time t in ΣA

t if all the constituents and the walls of CA are removed and placed far away from
ΣA

t .
System, properties of a system. We will call system A a collection of matter CA defined by the initial
composition n0A, the stoichiometric coefficients νννA of the allowed reaction mechanisms, and the possibly time-
dependent specification, over the entire time interval of interest, of:

• the geometrical variables and the nature of the boundary surfaces that define the regions of space RRRA
t ,

• the rates ṅA←
t at which particles are transferred in or out of the regions of space, and

• the external force field distribution FA
e,t for CA,

provided that the following conditions apply:

1. an ensemble of identically prepared replicas of CA can be obtained at any instant of time t, according to
a specified set of instructions or preparation scheme;

2. a set of measurement procedures, PA
1 , . . . , PA

n , exists, such that when each PA
i is applied on replicas

of CA at any given instant of time t, the arithmetic mean 〈PA
i 〉t of the numerical outcomes of repeated

applications of PA
i is a value which is the same for every subensemble of replicas of CA (the latter condition

guarantees the so-called statistical homogeneity of the ensemble); 〈PA
i 〉t is called the value of PA

i for CA

at time t;
3. the set of measurement procedures, PA

1 , . . . , PA
n , is complete in the sense that the set of values {〈PA

1 〉t,. . . ,
〈PA

n 〉t} allows to predict the value of any other measurement procedure satisfying conditions 2 and 3.

Then, each measurement procedure satisfying conditions 2 and 3 is called a property of system A, and the set
PA

1 , . . . , PA
n a complete set of properties of system A.

State of a system. Given a system A as just defined, we call state of system A at time t, denoted by At, the
set of the values at time t of

• all the properties of the system or, equivalently, of a complete set of properties, {〈P1〉t, . . . , 〈Pn〉t},
• the amounts of constituents, nnnA

t ,
• the geometrical variables and the nature of the boundary surfaces of the regions of space RRRA

t ,
• the rates ṅA←

t of particle transfer in or out of the regions of space, and
• the external force field distribution in the region of space ΣA

t occupied by A at time t, FA
e,t.

Closed system, open system. A system A is called a closed system if, at every time instant t, the boundary
surface of every region of space RA

it is a wall. Otherwise, A is called an open system.
Comment. For a closed system, in each region of space RA

i , the number of particles of the i-th constituent can
change only as a consequence of allowed reaction mechanisms.
Composite system, subsystems. If systems A and B, defined in the same time interval, are such that no
region of space RA

i overlaps with any region of space RB
j , we will say that that the system C whose regions of



space of are RRRC = RA
1 , . . . , RA

i , . . . , RA
rA

, RB
1 , . . . , RB

j , . . . , RB
rB

is the composite of systems A and B, and that A
and B are subsystems of C. Then, we write C = AB and denote its state at time t by Ct = (AB)t.
Isolated system. We say that a closed system I is an isolated system in the stationary external force field FI

e,
or simply an isolated system, if during the whole time evolution of I: (a)I is surrounded by a region of space in
which no material particle is present, and (b) the external force field FI

e is stationary, i.e., time independent.
Separable closed systems. Consider a composite system AB, with A and B closed subsystems. We say that
systems A and B are separable at time t if:

• the force field external to A coincides (where defined) with the force field external to AB, i.e., FA
e,t = FAB

e,t ;
• the force field external to B coincides (where defined) with the force field external to AB, i.e. FB

e,t = FAB
e,t .

Subsystems in uncorrelated states. Consider a composite system AB such that at time t the states At and
Bt of the two subsystems fully determine the state (AB)t, i.e., the values of all the properties of AB can be
determined by local measurements of properties of systems A and B. Then, at time t, we say that the states
of subsystems A and B are uncorrelated from each other, and we write the state of AB as (AB)t = AtBt. We
also say, for brevity, that A and B are systems uncorrelated from each other at time t.

Environment of a system, scenario. If a system A is a subsystem of an isolated system I = AB, we can
choose AB as the isolated system to be studied. Then, we call B the environment of A, and we call AB the
scenario under which A is studied.
Comment. The chosen scenario AB contains as subsystems all and only the systems that are allowed to interact
with A; all the remaining systems in the universe are considered as not available for interaction.

Process, cycle. We call process for a system A from state A1 to state A2 in the scenario AB, denoted by
(AB)1 → (AB)2, the change of state from (AB)1 to (AB)2 of the isolated system AB which defines the scenario.

Restriction. In the following (for brevity) we will consider only closed systems and only states of a closed
system A in which A is separable and uncorrelated from its environment. Moreover, for a composite system
AB, we will consider only states such that the subsystems A and B are separable and uncorrelated from each
other.

Reversible process, reverse of a reversible process. A process for A in the scenario AB, (AB)1 → (AB)2,
is called a reversible process if there exists a process (AB)2 → (AB)1 which restores the initial state of the
isolated system AB. The process (AB)2 → (AB)1 is called reverse of process (AB)1 → (AB)2.
Comment. A reversible process need not be slow. In the general framework we are setting up, it is notewor-
thy that nowhere we state nor we need the concept that a process to be reversible needs to be slow in some sense.

Weight. We call weight a system M always separable and uncorrelated from its environment, such that:

• M is closed, it has a single constituent, with fixed number of particles and mass m, contained in a single
region of space whose shape and volume are fixed;

• in any process, the difference between the initial and the final state of M is determined uniquely by the
change in the position z of the center of mass of M , which can move only along a straight line whose
direction coincides with that of a uniform stationary external gravitational force field Ge = −gk, where
g is a constant gravitational acceleration.

Weight process, work in a weight process. A process of a system A is called a weight process, denoted by
(A1 → A2)W , if the only effect external to A is the displacement of the center of mass of a weight M between
two positions z1 and z2. We call work performed by A in the weight process, denoted by the symbol WA→

12 , the
quantity

WA→
12 = mg(z2 − z1) . (1)

We will say that the work is done by A if z2 > z1 or is received by A if z2 < z1. Two equivalent symbols for
the opposite of this work are −WA→

12 = WA←
12 .

Equilibrium state of a closed system. A state At of a system A, with environment B, is called an equilibrium
state if:

• state At does not change with time;
• state At can be reproduced while A is an isolated system in the external force field FA

e , which coincides
with FAB

e .
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Figure 1: Schematic illustration
of a weight process for system A.

Stable equilibrium state of a closed system. An equilibrium state of a closed system A is called a stable
equilibrium state if it cannot be modified in any process such that neither the geometrical configuration of the
walls which bound the regions of space RRRA nor the state of the environment B of A have net changes.

DEFINITION OF ENERGY FOR A CLOSED SYSTEM
First Law. Every pair of states (A1, A2) of a system A can be interconnected by means of a weight process for
A. The works performed by the system in any two weight processes between the same initial and final states
are identical.
Definition of energy for a closed system. Proof that it is a property. Let (A1, A2) be any pair of
states of a system A. We call energy difference between states A2 and A1 either the work WA←

12 received by
A in any weight process from A1 to A2 or the work WA→

21 done by A in any weight process from A2 to A1; in
symbols:

EA
2 − EA

1 = WA←
12 or EA

2 − EA
1 = WA→

21 . (2)

The first law guarantees that at least one of the weight processes considered in Eq. 2 exists. Moreover, it yields
the following consequences:
(a) if both weight processes (A1 → A2)W and (A2 → A1)W exist, the two forms of Eq. 2 yield the same result
(WA←

12 = WA→
21 );

(b) the energy difference between two states A2 and A1 depends only on the states A1 and A2;
(c) (additivity of energy differences) consider a pair of states A1B1 and A2B2 of a composite system AB; then

EAB
2 − EAB

1 = EA
2 − EA

1 + EB
2 − EB

1 ; (3)

(d) (energy is a property) let A0 be a reference state of a system A, to which we assign an arbitrarily chosen
value of energy EA

0 ; the value of the energy of A in any other state A1 is determined uniquely by the equation

EA
1 = EA

0 + WA←
01 or EA

1 = EA
0 + WA→

10 (4)

where WA←
01 or WA→

10 is the work in any weight process for A either from A0 to A1 or from A1 to A0.
Rigorous proofs of these consequences can be found in Refs. [7, 10], and will not be repeated here.
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