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Abstract

Turbulence displays a rich caleidoscope of phenomena reminiscent of a new thermodynamic phase of fluid flows.
The kinetic theory of gases inspired, for instance, Prandtl’s mixing layer theory for the estimation of the eddy vis-
cosity. Intriguingly, fully developed grid turbulence is experimentally observed to give rise to vortices following a
Maxwell-Boltzmann distribution. In addition, the onset of turbulence has features of a phase transition. In this talk,
we recapitulate and elaborate the analogy of turbulence as a thermodynamic phase of fluid motion in order to motivate
open research questions.

1) Temperatures and energy distributions in thermodynamics

Thermodynamics describes how matter can appear in different phases, like solid, liquid, gaseous, and plasma. Tran-
sition from one phase to another occurs when the temperature 7" is increased and the phase change energy AL is
introduced. For instance, water turns into steam when the heat of vaporization Ly = 2257kJ/kg is added to water at
T = 373K°. Temperature is a macroscopic expression of the microscopic random motion of the atoms or molecules
(mass m) that fly around and interact by collisions. These random velocities of the molecules can be described
in many cases (called thermal equilibrium) by the famous Maxwell-Boltzmann distribution. The random velocities
imply a distribution of random kinetic energies, so that a velocity distribution can also be converted into an energy
distribution, as illustrated in Fig.1a for two different temperatures.
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Figure 1: Molecular energy distributions for gases at 2 different temperatures, and thermal energy of air; (b) Tem-
perature change due to (1) input from electrical sparc, (2) heat Q, (3) work W, or (4) eating; (c) Shear fields at
Re < Re* (laminar), and Re > Re™ (turbulent) eddy with rotation induced p.

Generally speaking the temperature 7" is a measure for the average kinetic energy of the molecules, and 1" can
be increased by some amount AT through the input of work AW, or by the injection of heat A, when an object
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is brought into thermal contact to a hotter object, as indicated in Fig. 1b. Thus, the temperature is a macroscopic
parameter measuring the energy of the microscopic random motion.

2) New internal energies and energy distributions in turbulent fluid — the features
of a new phase

Matter in all phases possesses internal energies, U, partly related to the energies of the microscopic molecular motion,
and partly hidden as structural energies. In addition, some macroscopic segments of matter of mass m, like a cloud
moving through the sky, or water flowing in a river also can have macroscopic velocities u(x, t) that give each volume
element of mass m the macroscopic kinetic energy Ex = m/||ul|?/2. For such motion, one must always specify the
reference system in which the motion is measured. So, for instance, a glass of water of mass myy sitting in a train
that moves at the speed wr , carries no kinetic energy for an experiment performed in the train, but will dump the
kinetic energy mw ur /2 onto a spectator seeing the train pass by when the water is tossed out of the window.

In contrast, the internal energy U of a medium does not depend on the reference system in which the matter is
observed. When the temperature of a medium is raised by the input of energy, its internal energy increases. There are
additional components to the internal energy, namely (a) the phase change energy [1], or (b) — of particular concern
here — the energies residing in the structures of turbulent flow. These components are neither associated with a
change of temperature AT, nor the speed of the reference system against which the flow is measured, and must be
counted as a part of the internal energy — thus giving individual phases their unique identities.

Laminar flow carries translational kinetic energy, but when the flow turns turbulent at Re > Re”™, it acquires
eddies which carry two new forms of internal energy: rotational kinetic energy , Ex r, which resides in every newly
formed eddy, and an equal amount of coherence energy [2], Ec residing in the pressure defect-volume work of every
eddy, see Fig.1c. Both forms of energy are extracted out of the kinetic energy from the parent laminar flow in which
the turbulence evolved.

While the translational kinetic energy E'x of the parent laminar flow depends on the velocity U,¢s of the refer-
ence system against which the flow was measured, neither Ex r nor E¢ is a function of the speed of U,¢. Therefore
FExr and Ec must be counted as part of the internal energy, giving turbulent fluid the distinct features of a new phase.
Thus, we consider the turbulent “state” as the dynamic phase of fluid motion. However, due to friction, this inter-
nal energy leaks gradually into the thermal background and is only temporarily “parked” in the mesoscopic energy
range, between the microscopic molecular motion, and the macroscopic pressure - volume work. The macroscopic
thermodynamic parameters like p and 7" have their roots in the microscopic energy distribution of their constituent
molecules, e.g. a Maxwell-Boltzmann distribution. We noted many years ago [3] that the "mesoscopic” eddies of
turbulence, also possess energy distributions, reminding of a Maxwell-Boltzmann distribution. These results are
repeated here, showing the apparatus (Fig. 1a), eddy energy distributions for different distances from the grid, as
extracted from photo sequences like Fig. 2c,d. At the grid speed U = 20cm/sec, the distance X = 190cm corre-
sponds to At = 9.5sec after starting the turbulence. Clearly, the eddies "cool” as they lose energy into the thermal
background.

(b) (c,d)

Figure 2 (a) Apparatus Grid bar diameter d = 1.26¢m, spacing 5.08cm, moving through tank at 20cm/s. (b) Number
of eddies of radius R, as function of distance x from the grid. (c) Surface streaks exposure time At = lsec, and (d)
same surface area 3sec later.
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The new internal energies in turbulent flow may be broken up into spatial modes of a Galerkin method, generaliz-
ing spectral methods [4]. Energy modes, are well known in spectroscopy and thermodynamic, for instance electronic
excitation, or angular momentum modes in molecules. Subsequent to the excitation of such modes they revert back to
the lower energy state upon the emission of photons, which move some energy out of the system. The Galerkin modes
are originally excited by momentum input from the macroscopic range, they interact among themselves via triadic
interactions and the eventually loose all heir energy into the thermal background, thereby increasing the entropy of
the system.

3) From thermodynamics energies to questions about turbulence

Energy can show up in thermodynamics on very different scales: (a) As particle energy inside atomic nuclei, (b) as
atomic excitation in atoms or molecules, (c) as microscopic kinetic energy of the random motion in gases, or (d) as
pressure volume work via pV = pRgT, and (e) macroscopic kinetic residing in flow fields. Turbulent flow with
its ”self organized” coherent structures adds additional mesoscopic internal energy on a scale that falls between the
microscopic and the macroscopic energy ranges. Numerical calculations of turbulent flows [4] show that the eddy
energy distribution is raised for the larger eddies by input from the macroscopic inhomogeneous flow field, and is
reduced on the small energy side by dissipative energy losses to the thermal background, see Fig. 3c.
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Figure 3: Energy scales and fluxes (a) from particle energies to pressure p, and temperature T, (b) ”Laminar” shear
flow field with viscous dissipation, (c) shear flow leading to fully developed turbulence, with eddy energy distributions
in the mesoscopic energy range between microscopic kinetic energies, and macroscopic pdV .



JETC X, Copenhagen, 22-24 June 2009
Joint European Thermodynamics Conference

However turbulence internal energy is not “static” like the heat of evaporation of a medium, because the energy of
the turbulent eddies is continuously degraded into heat by the actions of viscosity, that gradually increases the entropy
of the medium. We suspect that in turning turbulent shear flows reduce or even minimize their entropy production
rate (.

Fig. 3c shows turbulent flow structures in relation to the molecular and macroscopic parameters and energy scales.
Hot structures, like sparks, loose energy by radiation, and thermal conduction into other regions of space, while
turbulent fluid dissipates its energy locally into the molecular motion of its background fluid.

Here we like to explore what new insight could be gained for thermodynamics as well as for fluid flow by looking
at the thermodynamic aspects of turbulence. A number of intriguing research questions can be pursued:

1.

Turbulence arising in shear flows at Re = DU /v > Re* adds the new energy modes Erurs = Exr + Ec
to the spectrum of atomic/molecular energy modes E 4,5, (random kinetic energies, dissociation energies,
electronic excitation -, and ionization energies). While the F 4,5, modes convey energy through “photons”
(transversal E-M waves), the Eturp modes dump heat through friction into the thermal background, thereby
gradually dissipating the turbulence energies.

What are the thermodynamic roots of the Reynolds number Re, and what fundamental new physics occurs at
the critical Reynolds number Re™? Is there some similarity to the boiling temperature Tz, where a liquid turns
into a gas, albeit that the Reynolds number deals with angular momentum, while the temperature is an energy
parameter (fluid dynamics boiling)?

Describe the complete energy content of eddies (and rivers as seen in grid turbulence [3] using the mode picture,
with mode life-times, and possibly using the energy distribution half width parameter F' of the eddy spectrum
(similar to the kinetic energy-defined temperature 7. It should include a function of the Reynolds number.
Separate the power flux terms Q); of [4] into energy input from macroscopic flow and heat loss terms to the
microscopic regime —- like the induced absorption B,,.,, and spontaneous transition A,,, probabilities of
spectroscopy.

Can the energy dissipation rate for eddies I' = dP/dt = aM?" [Watt] be expressed as function of only the
eddy mass/unit length M [kg/m], and 2 unique constants a, and b, similar to the famous allometric”” metabolic
rate of animals [5], known as the “mouse to elephant” curve I' [Watt] ~ 4M [kg]3/ 4 which describes the
energy dissipation of animals? (Further comment: the slope b = 3/4 holds over 18 orders of magnitude:
for unicellular organisms, ectotherms, and warm blooded, only the constant differs: It is aw ~ 4 for warm
blooded, and ac = 0.3 for ectotherms!

Turbulence ”parks” energy temporarily in the mesoscopic range. Does it thereby also reduce (or even minimize)
the entropy production rate?

. Heat engines convert temperature differences (reservoirs of temperatures 7' and 7T ) into macroscopic me-

chanical work. Can one similarly regain macroscopic (angular) momentum out of two different reservoirs
(characterized by ®; and ® of angular momentum, and can one derive an efficiency Hp,, for this process
(possibly in the form Hy,p, = 1 — y/®1 /P2 ) similar to the thermodynamic maximum power efficiency?
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Novikov-Curzon-Ahlburn discovered that the power of an internally reversible
heat engine with two heat reservoirs and linear (irreversible) heat exchange
between the working body and reservoirs can not exceed some given maximal
power, and if an engine operates at this maximal power then the ratio of its work-
ing body’s temperatures during contacts with reservoirs must be equal to the
square root of the ratio of reservoirs’ temperatures. We proved that this result
also holds for an internally irreversible heat engine operating within inhomoge-
neous thermodynamic system of the general type (which includes multiple heat
reservoirs, multiple subsystems with finite heat capacity and arbitrary contacts
between them). This proof follows from our solution of the general problem
of the maximal extend of heat into work and work into heat transformation
permitted by thermodynamics. It also obtain the conditions which determine
temperature distributions within the systems that can only be maintained if an
external energy is supplied to the system and the optimal temperature lows that
are required to maintain the given distribution of temperatures in a part of the
system.

Introduction

The problem of obtaining the maximal work in a nonequilibrium thermo-
dynamic system is one of the fundamental problems of thermodynamics. If
process’ duration and its objective low’s rate (engine’s power) are not con-
strained then the solution is a reversible process. In many cases the problem
of maximal-possible power of a heat engine arises ([1], [2]). This problem is
meaningless when heat engine operates reversibly. It this paper we extend it
to a heat engine operating in a general type stationary thermodynamic sys-
tem with multiple reservoirs and multiple finite-capacity subsystems. If heat
transfer laws and heat transfer coefficients are given then such a system will
reach a stationary state and remain in it. This state is described by distribu-
tion of temperatures between subsystems, that is, by a discrete temperature
field within the system. We assume first that each subsystem (reservoir with
constant a temperature, finite-capacity ubsystems, transformer — heat engine or
heat pump) be internally-reversible. Thus, irreversible effects occur only on the
boundaries between the subsystems. This assumption is necessary to guarantee
the validity of thermodynamic description for each subsystem.

Various constraints on the subsystems’ temperatures may cause the maximal
power N in such a system to be positive or negative. If there is no transformer
in the system then some, usually unique, distribution of temperatures will be
reached. We shall call this self-settled temperature field in the system. If the
system includes a transformer then different configurations of temperature fields



are possible depending on the temperatures of its working body during contacts
with the subsystems (control variables) and heat transfer coefficients. For some
temperatures the maximal power generated by transformer will be positive and
for others it will be negative.

The maximal power problem for two reservoirs and linear heat transfer has
been studied in details. The optimal thermostatting problem has been formu-
lated and solved for a system that consists of sequentially connected subsystems
(3], [4], [5]). To the best of our knowledge the problem of constructing the set
of realizable temperature fields and its division into generating and consuming
power subsets has not been considered in the literature.

In this paper is considers these problems for a general type system with
arbitrary structure. The general solutions are then specified for Newton laws
of heat transfer. In many cases it turns out that the extremal conditions are
reduced to the requirements that some function has the same value during every
contact between the heat engine (heat pump) and every subsystem. This allows
us to construct a control system to maintain maximal power when external
conditions change. In the sequel we will refer to the heat engine and heat pump
as transformers. All these problems can be extended into the systems which are
non-homogeneous with respect to pressure or to other intensive variables. We
limited the scope to temperature non-homogeneous systems to keep results in a
compact form.

Transformer’s maximal power

We consider a stationary thermodynamic system which consists of (n - m)
reservoirs with constant temperatures, m finite-capacity subsystems, whose tem-
peratures are determined by their internal energies and the transformer. We de-
note the heat exchange lows between subsystems as ¢;; . These lows are caused
by the temperature differences between subsystems. The transformer generates
power by contacting the subsystems when it receives heat from them or rejects
heat into them. It is required to find such temperatures ui for the contact be-
tween the transformer and each of the subsystems that the power N is maximal.
If the maximal power is negative then it corresponds to the minimum of the
external power consumed by the system.

Problem formulation and conditions of optimality We denote the temper-
ature of the i-th subsystem as T;, the heat low between the i-th and the j-th
subsystems as ¢;;(T;, T;), and the temperature of the working body when it con-
tacts the i-th subsystem as u;, the heat low between the i-th subsystem and the
transformer as ¢;(T;,u;) and the power of the transformer as N. We define the
low entering each subsystem as positive. When 7} increases, g;; decreases mono-
tonically, and when 7} increases, the low increases monotonically. If T; = Tj
then ¢;; = 0. If there is contact between subsystems then ¢;; = 0. We assume
that functions g;;(T;,T;) are continuously-differentiable and that the working
body is internally reversible and the entropy production in it is equal zero. The
maximal power problem takes the form
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The optimal contacts’ temperatures obey the condition
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We shall call the left-hand side of this equation (which has the dimension of
temperature) the reduced contact temperature. Thus, the following Statement
holds:

In order to obtain the mazimal power the reduced contacts’ temperatures for
contacts with all reservoirs of the transnformer must be equal. The optimal
contact temperature for a contact with a finite-capacity subsystem is

= ,=1,...,m.
u;0q; /Ou; —qi 1+ N\ T (5)

The condition (5) relates the reduced contact temperature for contact with the
i-th subsystem with the reduced contact temperature with reservoirs A and
A; multipliers . These general conditions can be significantly simplified for
particular systems.

Conclusion

The limited possibilities of energy transformation in a thermodynamic sys-
tem with given structure and given exchange kinetics were studied. The results
obtained include maximal power and the formula which determines the bound-
ary between temperature fields in the system can be maintained only if power
is generated (maximal power is positive) or if energy is spent (maximal power is
negative). The minimal energy required to maintain given field of temperatures
in a multi-chamber system and the corresponding heat flows and temperatures
of chambers with free temperatures have been obtained.
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An industrial firm is an important element of an economic system. In
economic theory the firm is considered as a peculiar case of economic
agents. Its specific features are following:

e The firm fixes prices for both sides of the system: factors of
production and output goods, if the firm has got monopolistic power
at corresponding markets.

e The firm extracts money from the economic system; intensity of
this money flux is the firm’s profit and it is an objective function for
the firm.

The firm as a subject of the economic theory is investigated well
including application of thermodynamic approach [1-3]. But all
economic models use only one tool namely production function to
describe features of manufacturing method. Production function is a
dependency between yield and inputs. It is assumed that regime of
processing line operation have been chosen to be optimal for any set of
factors of production before the economic analysis.

The similar assumption is made by engineers. During the analysis of the
manufacturing method they assume all prices to be constant. It means
that as for economic researches we suppose that economic policy of the
firm is optimal for any regime of manufacturing equipment.

In this report a problem of optimal control of the firm is formulized as a
complex problem of cost-performance choice. Problem statement: fo
determine process-dependent parameters, prices of yield and inputs,
intensities of resources fluxes to maximize a vector of performance
indices of the firm. Note that the vector of performance indices includes
both engineering and economic components.

! This work is supported by Russian Foundation for Basic Research
(grant No. 08-06-00141).



In a simple case of separable factors of production we can introduce
analogs of COP as ratio of intensities of yield flux and the i-th factor
flux. Thermoeconomic investigations [4, 5] bring to significant results
but some sufficient troubles occur because of different interpretation of
“cost” notion. Here are some questions without an unambiguous answer:

o Which kinds of costs should be accounted during the economic
analysis of the firm?

o Which economic criteria should be chosen as the objective
function?

o Which intensive variables do determine intensities of the resources
fluxes in the system?

Results of the investigation depend on answers of these questions; that is

why these results are different.

Here we consider a generalized model of the firm. Otherwise this model
would be one more solution in a row. So, let us consider the firm
consisting of the manufacturing equipment. The firm can exchange
resources with its environment. Production process depends on both
exogenous potentials py = (g, -, hoy) and endogenous potentials
u = (ly, ..., y). These two kinds of potentials determine values of
driving forces. Driving forces determine in turn intensities of fluxes
g = (g4, .., gu) of production factors. One can use equations of
material balances to calculate yield flux intensity n as a dependency of
vector g. The performance vector n = (14, ...,Ny), Where n; = n/g;,
can be found now.

To optimize engineering part of the model of the firm one need to solve
the following problem:

n - max,, subjectto n(g(ug,p)) =fix. €))

To describe economic interactions we use the thermodynamic approach
[6]. Objective for the firm is the profit m and the performance index is
the profitability n, = m/(pg). Here p is prices vector. Prices p
determine intensities of factors of production fluxes according to
demand functions (kinetic equations of the economic processes). These
fluxes g determine values of exogenous potentials y,. So, optimization
problem for economic part has the form

ne = max, , subject to n(n, g,0(g, 1)) =fix. 2)

Fluxes of factors of production are determined by process-dependent
parameters on the one hand and economic potentials on the other hand.



These fluxes are irreversible and we can introduce a measure of
irreversibility of exchange processes. Let us call it traditionally:
dissipation of the resources. In our model dissipation is a vector.

The following statement is proved in the report: Considered problem on
performance maximization is dual to the problem on minimization of
dissipation vector. For both the problems the optimal solution can be
found in Pareto set. It means that the solution is not uniquely dependent.
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The theory of evolution by natural selection (1) is undoubtedly the most general and holistic description of the living
nature. However, from the cross-disciplinary perspective of biophysics, it is relevant to ask: What is the fundamental
law of nature that evolution follows? How to express the evolutionary theory in thermodynamic terms?

It is, of course, no new thought that evolution is a manifestation of the 2™ law of thermodynamics (2). On the
contrary, it seems that already a century ago Ludwig Boltzmann aimed at deriving an equation of motion for evolution
from the first principles. Boltzmann understood evolution as a probable process, a likely sequence of events, far from
being a miracle. Therefore he defined a concept, known as probability P, to summarize the state of a many-body
system. Logarithmic probability, known as entropy S = kgInP, is the additive measure for the status of a system in
evolution from one state to another, more probable one. This directional process is thus understood to follow the
principle of increasing entropy dS/dt > 0.

Apparently Boltzmann failed to complete his agenda since statistical physics, i.e., the foundation of thermodynamics,
has remained limited to closed systems whereas biological systems are unmistakably open to their surroundings.
Consequently, thermodynamics has had difficulties in understanding what life is. The lack of understanding is reflected
in many puzzling questions. For example, why life emerged? Why natural amino acids in proteins display a consensus
of chirality? Why the genetic code is ubiquitous? Why our genomes are loaded with non-phenotypic DNA? Why
protein folding is so difficult to predict? Why distributions of animals and plants are skewed, nearly log-normal? Why
cumulative curves of natural distributions are on log-log plots mostly straight lines, i.e., power-laws such as the species-
area relationship? What drives ecological succession and gives rise to diversity in general? Why the entire biosphere
behaves as a homeostatic system? Why nature organizes itself in a nested hierarchy of functional systems within
systems? Of course there are many other related perplexing questions in the fields where Darwin’s theory has found
supporters. For example, where do the laws of economy, such as the law of supply and demand as well as the law of
diminishing returns come from?

These questions are addressed using the 2™ law of thermodynamics written as an equation of motion derived from
statistical physics of open systems (3,4,5). Thermodynamics pictures everything in terms of energy. The holistic theory
is independent of scale and mechanisms of energy transduction and dispersal. While the description of evolution to
hierarchical organizations by the natural law is by no means new (6), the value of the mathematical formulation of
natural processes is that evolution at any scale and irrespective of its mechanisms can be analyzed rigorously. The
analysis reveals that evolution is a non-deterministic process that consumes free energy in the quest to level off energy
density differences. However, evolutionary trajectories are inherently intractable, i.e., unpredictable because the flows
of energy are inseparable from their driving forces in non-Hamiltonian systems with degrees of freedom.

Darwin, C. On the Origin of Species. John Murray, London, UK, 1859.

Salthe, S. N. Development and evolution: Complexity and change in biology. MIT Press, Cambridge, MA, 1993.
Sharma, V. & Annila, A. Natural process — Natural selection. Biophys. Chem. 2007, 127, 123-128.

Annila, A. & Annila, E. Why did life emerge? Int. J. Astrobiol. 2008, 7, 293-300.

Tuisku, P., Pernu, T. K. & Annila, A. In the light of time. Proc. R. Soc. A. 2009, 465, 1173-1198.

Salthe, S. N. Evolving hierarchical systems: Their structure and representation. Columbia University Press, New
York, NY, 1985.

© a0k wnE
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SUMMARY

In Thermodynamics education, precise teaching and learning the laws of thermodynamics is of utmost importance.
Unfortunately, both have deteriorated in the last couple of decades and are still on a negative slope. There are
various reasons for it the most important being the fact that the instructors of thermodynamics are no longer
thermodynamicists but rather people who have doctoral degrees in computational heat transfer, fluid mechanics and
the like. Also, although the page numbers in textbooks have increased, the quality of content has decreased. Thus
the fundamental understanding of thermodynamics is lacking as well as advanced knowledge. Here a method to
present entropy to the undergraduates is discussed in the hope that a better job can be done in the classroom.

THE CARNOT CYCLE
A thermodynamic cycle is defined as a series of thermodynamic
P2 processes that return to the initial state. A thermodynamic
thermal reservoir is defined as a system that stays at its
temperature, a constant, no matter how much energy is
transferred into it or out of it. An example would be a large
body of water or air, such as a river or ocean or the atmosphere.
gdiabatic Strictly speaking there are none in nature. A reversible process is
one in which the system gnd the surroundings can be returned to
their original state after certain changes have been made without
> leaving any trace in its path. Again, of course, in nature there are
A none. All natural processes are irreversible. However, in
thermodynamics these assumptions are freely made to determine
the limits of performance for systems, devices and cycles. One such cycle is the CARNOT cycle. It is made of two
reversible adiabatic processes and two constant temperature heat reservoirs. If the working fluid is considered to be
an ideal gas, for simplicity of algebra, then the energy added as heat at Ty is given by, since {dU =me,dT = O} and
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(5Q = pdV ) which for process b-c and an ideal gas gives {Q,m = %TH In %—} . Similarly an equivalent relationship
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upon substitution results in{ 2 = ——L-} which permits one to substitute temperatures for heat quantities in the
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determination of Carnot performance criteria which quickly give performance values for the actual efficiency of an
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engine 7 = ——Q—-————~ and for Carnot <77.ewor = 1——7:—— , as well as coefficient of performance for a
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refrigerator, {,B =— V?/L }and for Carnot {ﬁC‘ARNOT =

——L—} since {~W, =0, +0Q,} , and for a heat pump,
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{7 = On } and for Carnot {y = ———f—'-} . It must be remembered that one of the heat quantities is negative, out
of a system, as it should be since the ratio of absolute temperatures is always positive. The sign convention,
whatever it is assumed to be, must be followed strictly and without compromise within a given problem [1] in spite
of the fact that some textbooks would rather use absolute values and suggest that “...a relaxed sign convention will
be followed”, [2]. No such thing is acceptable in the precise teaching of thermodynamics.

ENTROPY

Entropy is a thermodynamic property which comes about as a
result of the second law of thermodynamics. To demonstrate its
existence, consider a reversible process from an initial state i to a
final state f and use the first law to give {Q -Wy = (U =V, )}

From i and f draw two reversible adiabatic lines. Then construct a

rev, isothermal

rev, sInx- reversible isotherm a-b so that the area above and below the
adiabatic - isotherm and between the original process i-f and the adiabatic
isothermal lines are equal. Thus we obtain that {W,.f =Wy } Therefore, now

; the heat terms give {Q,-f = Qiabf} since (Ur — Uj) does not change

because of the general character of a thermodynamic property.
Also Q;, and O, are equal to zero since they are adiabatic processes resulting in (Wl ): (W,.”,,f)z {Wm +W,, + W,)f}.

Therefore, the result becomes {Q

'~ Wy = (U U )} giving the final result that {Qab = Q,-f}. In general, therefore, an
arbitrary reversible process can always be replaced by a zigzag path between the same state points consisting of a

reversible adiabatic line, a reversible isotherm, and another reversible adiabatic line, such that
{Qorig,‘,m,procm = in,,,em,}. Now, to reach the definition of thermodynamic quantity entropy, consider a smooth

reversible cycle as shown below. On it inscribe reversible adiabatic lines of thickness A. For each slice or arc,
which is a reversible process, inscribe an isotherm so that the condition given above is satisfied. The cycles thus




formed are all Carnot cycles with the characteristic relationship
obtained between heat transfer and absolute temperature ratios.

; T,
a8V Thus for the first cycle drawn, ~Q{ﬁ-— =t
- QL: TL:
.- rev, adiabatic
. gH—‘+—QL—‘ =0, In a similar fashion, for the second cycle we
TH] TLI

have {gﬁi+—g—li=0}. Adding these two results and
H, L,

v generalizing for the sum of all such cycles, then {Z—g—’ = O} . In
i i
the limit as A — 0, the adiabatic lines come closer thus making

the heat quantities infinitesimal resulting in { cj‘ LY = O} which is
rey T

Rev, R the important CLAUSIUS THEOREM. Now consider two

reversible processes R, and R, starting from the initial state i and

Rev, R4 ending at the final state f. Since they are reversible, it is possible

to change the sense of R,. Since R and R, now form a reversible
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cycle, then 4%?— =0¢and j—dTg+ J‘iTQ— =0t . This results in
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the general relation J-é—Q— = J'—(S—Q == jég which says
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that if a reversible path is chosen, the path itself is not important so long as the process starts at i and ends at f. The

quantity is, therefore, given by the end states and not the path. As is the case in the first law of thermodynamics,

{%—Q—=O} is a

{(j‘é'Q—cj'&W =(j‘dU } and {cj‘dU = O} since internal energy is a thermodynamic property, then {

)
thermodynamic property and is called entropy, S. Therefore, { IdS =(S =S )} or for an infinitesimal process,

{-5—%9"» =dS } that forms the mathematical formulation of the second law of thermodynamics. It is, therefore, seen

that there is a similarity between the two laws of thermodynamics and their definitions of internal energy and
entropy. To further extend this discussion to the inequality of Clausius, consider the fact that all heat engines
operating between a given high temperature source and a lower temperature sink none can have a higher efficiency
than the Carnot engine. Thus using the figure above, but this time having the process at 7}, to be irreversible,

then 1+—Qﬂ’iy—— S(l-kgL—) . Using the fact that {:—Qé-z—T—L—} for reversible energy transfers,
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H irrgy H

[fgﬂ@—] > (é—Qf—[ﬂ?ﬂ‘—j Using the definition of entropy as given above, dS > [—5—Q—Hl‘ﬁ“—] or CJ-dS 2 (%—?—J
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which states that in all real processes entropy increases and the equality is only for the reversible process. This

further reduces the result to what is expected, the inequality of Clausius, the fact that 4[§~Q—j <0.
IRREV

CONCLUSION

The explanation given above for the second law and entropy was attempted in [3] and [4] although to no complete
conclusion. What happened in the decades after is that this explanation was abandoned in the hope of “making
things clear”. Discussing entropy in this context, with the correct sign convention of heat in positive and work in
negative, HIP-WIN, although all energy in is positive and all energy out is negative could also be used [5], clearly
explains what entropy is, a thermodynamic property, and how it can be derived simply at the level of the novice
undergraduate student. The mystery about it should really not exist and its value in practice is enhanced.
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Intramolecular association (association internal to the molecule) has been shown to have a significant
effect on the phase behavior of glycol ethers (a green solvent) [1] and of telechelic polymers [2].
Brinkley and Gupta [1] measured the extent of intramolecular association in systems containing
glycolethers using spectroscopy (FTIR). The influence of intermolecular and intramolecular
association on the phase behavior of telechelic polymers was shown by Gregg, Stein and Radosz [2].

When the SAFT equation of state was originally developed in the late 1980's [3] it only included
intermolecular association to form chain or tree-like structures, while the formation of rings was
neglected. Around 1994-1995 two groups (Sear & Jackson [4] and Chapman & coworkers [5-6])
independently extended the SAFT theory to include ring formation from chains with one attractive site
on each terminal segment. Using different approaches, the two groups developed equivalent
expressions for the contribution to the Helmholtz free energy for this specific type of intramolecular
association. Although the theories were eventually applied to mixtures, a general solution for mixtures
of molecules with multiple association sites was not obtained.

In this work the theory has been extended to provide a general expression for the free energy of
mixtures of molecules with multiple associating sites that can form intermolecular and intramolecular
bonds (even multiple intramolecular bonds within the same molecule are possible). The equations have
been rewritten using the approach of Michelsen and Hendriks [7] in order to simplify the calculations.

The theory will be applied to different systems of interest, such as systems containing glycol,
glycolether, or other compounds with multiple functional (associating) groups, using the PC-SAFT
equation of state [8-9], and the results will be compared to the results with PC-SAFT without
accounting for intramolecular association.
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Abstract

A rectangular box filled by an ideal monatomic gas and separated into two parts, namely macro and nano, is
considered. Under temperature gradient, it is shown that thermosize effects, similar to thermoelectric effects, arise
due to changes of thermodynamic and transport characteristics of gases in small scaled systems. A possibly new
thermodynamic power cycle based on thermosize effects is analyzed. Expressions for specific work, heat and
efficiency of a possible thermosize power cycle are derived and the cycle is thermodynamically examined. The
results can be useful to design some new devices.

1. Introduction

In recent years, micro/nano systems constitute a new research area in literature. In addition to a great number of
experimental inventions and practical applications, also the theoretical predictions about the new effects, which can appear
just in micro/nano systems, provoke rapid developments in nanotechnology [1-7]. In nano scale, thermodynamic and
transport properties of gases differ from those in macro scale [8-15]. These differences introduce some new effects and
make the realization of new devices possible. Thermosize effects are the new effects, which arise due to changes of
thermodynamic and transport characteristics of gases in small scaled systems. Physical mechanisms of thermosize effects
are similar to those of thermoelectric effects although they do not exactly match up with each other in mathematical
representation. In this study, a rectangular box divided into two parts, namely macro and nano, is considered. The box is
assumed to be under a temperature gradient and filled by a monatomic gas. Macro and nano parts are connected to each
other by a channel at low temperature side while they are disconnected at high temperature side. Under steady state
conditions, pressure gradient is zero in macro part. On the other hand, the particle flux is zero in nano part since the domain
size is smaller than the mean free path of particles, I. It is shown that these different regimes cause different chemical
potential gradient under the same temperature gradient. Therefore, a chemical potential difference occurs at the high
temperature side of the box. This chemical potential difference can drive the particle transport if the disconnected parts at
high temperature side are connected to each other by a hole smaller than I. Consequently, temperature gradient causes a gas
flow, which is able to produce work. This constitutes a possibly new thermodynamic power cycle which can be observed in
case of the combination of macro and nano structures. These effects are called here thermosize effects and the cycle
constitutes a thermosize power cycle which is similar to thermoelectric power cycle. Expressions for specific work, heat
and efficiency of a possible thermosize power cycle are derived and the cycle is thermodynamically analyzed. The results
obtained here can be useful to design a new device based on thermosize effects.

2. Thermosize effects

A rectangular box filled by a monatomic gas and separated into nano and macro parts in one direction is seen in
figure 1. The box is under temperature gradient. Macro and nano parts are connected to each other by a channel at
low temperature side while they are disconnected at high temperature side. At the beginning, gas flow is not

allowed since macro and nano parts are disconnected at high temperature side. Under steady state conditions, zero
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net particle flux corresponds to zero pressure gradient, ?p =0, in macro part since the size of the domain is much
bigger than the mean free path of particles and the hydrodynamic regime is built in this part [16]. On the other
hand, zero net particle flux corresponds to the condition of @(p/\/?): 0 since the size of the domain is smaller

than the mean free path of particles and the free molecular regime is built in nano part [16]. Therefore, chemical

potential gradients are different in macro and nano parts although the temperature gradients are the same.

| T” |
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Figure 1: Thermosize effects.
Chemical potential of a monatomic ideal gas is given as [14]
4= —KT |n(cT:/2 J )

where T is temperature, k is the Boltzmann’s constant, n is particle density, ¢ is a constant defined by

c= (27zmk)3/2/h3 , M is the atomic mass and h is the Planck’s constant. By considering Eq.(1) and the conditions

of Vp=0 and @(p/\/ﬂ: 0, the derivations of chemical potential with respect to temperature for macro and

nano domains can be determined as follows respectively,

(d_ﬂjm :(d_ﬂj _MTny) 5, @)

dT dT J5po T 2
(d—”] =(d_yj _ M) g (3)
dar ), \dT §(p / ﬁ):o T
Since w5, = g, net chemical potential difference, Au = 14 — 14, can be obtained as
Ty Ty Ty
d d My — U k
R e e N | o e I I | E= L TR S @
T nom T

By use of ideal gas equation of state, p=nkT , and the conditions of Vp =0 and ﬁ(p/\/ﬂz 0, the variations of

densities in macro and nano parts can be given as respectively,

N (T ) =T /T ()

N (T)=n, (T /T2 (6)
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It should be noted that n, =ng since wu, =3 and T, =T3 =T . Therefore, net chemical potential difference,

Ap = py — iy, can be determined by using Eqgs.(1), (4)-(6) as

Ty Hn ~— Hm K k T
Au=py == | =T dT +E(TH _TL):ETH In 7| ()
T L

Therefore, in this kind of configuration, temperature gradient causes a driving force for particle (or mass)
transport from region 1 to region 4. Particle transport causes also heat exchange during isothermal process 4-1.

Isothermal heat exchange per transferred particle can be calculated as

1
Ag = [Tds =Ty (s —54) ®)
4

For an ideal Maxwell gas, the relation between entropy per particle and chemical potential is given by
S, M
s=—k -+, 9
2 T )
By using Eq.(9) in Eq.(8), g4 is obtained as follows,

k T
Ua1 = (g —111) = ETH In(T_HJ : (10)
L

It should be noted that both chemical potential difference due to temperature gradient, Eq.(7), and isothermal heat
exchange, Eq.(10), are similar to the Seebeck and Peltier effects in thermoelectric processes. These effects here
are called thermosize effects since they result from both temperature and size difference together.

3. Thermodynamic analysis of a thermosize power cycle

If the regions (4) and (1) are connected to each other by a hole smaller than I, a gas flow begins and a
thermodynamic cycle occurs. Figure (2a) represents this cycle. T-s diagram of the cycle is given in Figure (2b).
Exchanged heats during the processes (1-2), (2-3) and (3-4) can be calculated as

2 T L 5

12 :deSZ_.[ Td(?jzgk(TL ~Th) (11)
1 Th

23 =0 (12)
4 Ty

U3q = [Tds=— | Td(ﬁ]:ZK(TH -TL). (13)

Figure 2: Thermosize power cycle.
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Net specific work output is

k T k
W =012 + 023 + 034 + 041 :ETH In(%)‘E(TH -TL), (14)

While the net specific heat input is g4, given by Eq.(10). Therefore efficiency of this cycle is

1-7

. (15)
Inz

n=1+

where 7z is the temperature ratio defined by =T, /Ty . Efficiency and the Carnot efficiency versus to
temperature ratio are shown in figure 3a. It is seen that the difference between the efficiency of the cycle and that
of Carnot reaches its maximum value of 0.3 when 1=0.2. Variation of the dimensionless specific work with the
temperature ratio is given in figure 3b. It is understood that specific work is less than the thermal energy of

particles in the wide range of .
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Figure 3: (a) Variation of efficiency with temperature ratio, (b) Dimensionless specific work vs 7.
Conclusion

Combination of macro and nano channels filled by an ideal gas under temperature gradient constitutes a
thermodynamic cycles based on thermosize effects. This possibly new effects and the cycle can be used to convert
heat energy to mechanical energy in micro/nano devices. A more detailed investigation of this kind of cycles

using ideal quantum gases is also an undergoing work.
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This paper shows how the classical methods of optimal control can be used by the solar energy
engineer. A number of applications were selected to give a broad idea about the usefulness of these
optimization procedures.

1. Sizing solar collection area

As a first example, we refer to the optimum size and structure of the solar energy collection systems
[1]. Several procedures for sizing and optimizing the structure of solar collection systems are
proposed. Four economical indices, including net present value and internal return rate, are given as
examples of objective functions. Three solar energy applications were considered. A rather involved
but still simple flat-plate solar collector model is used in calculations. The implementation was made
for a specific geographical location with a detailed meteorological database available. In the case of
solar collectors with uniformly distributed parameters, the procedure allows one to select the best
devices from a given set of solar collectors. For every selected device the optimum range of the
operation temperature is also determined. The best solution corresponds to systems with optimal non-
uniformly distributed parameters (Fig. 1).
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Fig. 1. (a) The number of transparent layers N and (b) the thickness of the bottom thermal insulation

L, for a solar collector system with non-uniform optimally distributed parameters.

The general theorem proposed here shows how the modified optical efficiency and heat loss coefficient
should be distributed for cost minimization. One finds that unglazed, single-glazed and double-glazed



collectors should be used on the same collection area in order to obtain the best performance. Also, the
bottom insulation thickness should be changed accordingly.

2. Sizing solar collectors

As a second example, we refer to the optimum fin geometry in flat-plate solar collector systems [2].
The width and thickness of fins is optimized by minimizing the cost per unit useful heat flux. The
proposed procedure allows computation of the necessary collection surface area. A rather involved but
still simple flat-plate solar collector model is used in calculations. Model implementation requires a
specific geographical location with a detailed meteorological database available. Both fins of uniform
and variable thickness were considered. In case of fins with uniform thickness, the optimum distance
between tube centre decreases by increasing the operation temperature, while the optimum fin
thickness is relatively the same, whatever the operation temperature and meteorological factors. The
optimized width of the collection surface decreases when the operation temperature increases. The best
economical performance is obtained in case of fins with optimized space variable thickness (Fig. 2).

T

fi

T 1T T 17 T T 71
20 200 300 30 30 330 340 X0

Fig. 2. Optimum distance W between two adjacent tubes centers for a fin of variable thickness as a
function of fluid inlet temperature T’ 1. - Operation during the cold and warm season as well as during

the whole year was considered. Meteorological data for the whole year 1961 in Bucharest were used.

Optimal control techniques are used in this case. The optimum fin cross-section is very close to an
isosceles triangle. The fin width is shorter and the seasonal influence is weaker at lower operation
temperatures. Fin width and thickness at base depend on season. The optimum distance between the
tubes increases by increasing the inlet fluid temperature and it is larger in the cold season than in the
warm season.

3. Optimal operation - systems with water storage tanks

As a third example, we refer to the optimal control of flow in solar collector systems with fully mixed
water storage tanks [3]. Closed loop flat-plate solar collector systems are considered. The water storage



tank operates in fully mixed regime. Two design configurations were considered: (A) one serpentine in
the tank (for the secondary circuit) and (B) two serpentines in the tank (for both primary and secondary
circuits). An indirect optimal control technique based on Pontryagin’s maximum principle was
implemented. A detailed collector model and realistic meteorological data from both cold and warm
seasons were used in applications. Configuration (A) gives better performance than configuration (B)
but cannot be used during the cold season at higher geographical latitudes. The optimal operation
strategy involves two-step up and down jumps between zero and a maximum allowable fluid flow rate
in the primary circuit. During days with overcast sky the pump in the primary circuit operates almost
continuously. During days with cloudy or clear sky the pump often stops. The heat provided to the user
increases when the maximum fluid flow rate increases. This applies to both configurations (A) and (B).
In case of configuration (B) the heat provided to the user becomes rather constant at higher flow rates.

Fig. 3. Dependence on day during cold season of: (a) thermal energy Q—n [kWh] accumulated during a
day in the water storage tank, (b) thermal energy lost through the walls of the water storage tank, QAlm

[kWh] and (c) thermal energy qut [kWh] supplied to the user. Results for day-time and night-time
are presented separately in cases (b) and (c).

Figure 3 shows some results. When a constant flow rate strategy is adopted, there is an optimum ratio
between the volume of the storage tank and the area of the solar energy collection

surface: Vs / A ~33.3 L/m*. The optimal control strategy does not exhibit such an optimum: the

thermal energy supply to the user (slightly) decreases by increasing the ratio Vs / A .

4. Optimal operation - maximum exergy extraction

As a fourth example, we refer to optimal control of flow in solar collectors for maximum exergy
extraction [4]. The best operation strategies for open loop flat-plate solar collector systems are
considered. A direct optimal control method (the TOMP algorithm) is implemented. A detailed



collector model and realistic meteorological data from both cold and warm seasons are used in
applications. The maximum exergetic efficiency is low (usually less than 3 %), in good agreement with
experimental measurements reported in literature.
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Fig. 5. Dependence of the optimum mass flow rate #1' per unit collector surface area on hour number
in July for different values of the inlet fluid temperature. (a) 7 = 285 K ; (b) T; =300 K (c)

Ts =320 K. The dependence of the incident solar global irradiance on the hour number is also shown

in (d). Only hours during the daylight time are represented.

The optimum mass flow rate increases near sunrise and sunset and by increasing the fluid inlet
temperature. The optimum mass flow rate is well correlated with global solar irradiance during the
warm season (Fig. 4). Also, operation at a properly defined constant mass flow rate may be close to the
optimal operation.
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Abstract

Flash-boiling atomization is one of the most effective means of generating a fine and narrow
(size)-dispersed spray. It consists of an inlet and discharge orifices, connected by an
expansion chamber. Employing a special designed injector, lead to optimized spray properties

for lower injection pressures.

A mixture of liquids flows through the inlet orifice into the expansion chamber. The solute,
usually the propellant, is characterized by a high vapour pressure. Flash boiling of the
propellant occurs within the inlet orifice, after which the bubbles grow along the expansion
chamber. The growth process continues until the solvent, the liquid to be sprayed, is no longer
a continuous medium, but rather large droplets, separated by the propellant's vapour. The
mixture than exits through the discharge orifice, and further atomizes, usually by shear

mechanisms.

The higher the number of the vapour nuclei created during the flash boiling process, the
smaller the droplets that will be created just prior to discharging. If so, than one must strive to
design an atomizer in which the metastable degree of the propellant will be the highest
possible, i.e. phase change at the spinodal limit.

However, it was found that the optimal discharge occurs when the 2Phase mixture discharges
in a critical regime, at high volume fraction, according to the Slip Frozen Model (SFM).
Namely, when the vapour discharge at sound velocity, maximal slip prevail, thus enhancing
the shear atomization, outside the atomizer.



Rigorous and General Definition of Thermodynamic Entropy.
Part II: Temperature of a Thermal Reservoir and Entropy

Gian Paolo Beretta* and Enzo Zanchinit

Assumption 1: restriction to normal system. We call normal system any system A that, starting from
every state, can be changed to a non-equilibrium state with higher energy by means of a weight process for A in
which the regions of space R4 occupied by the constituents of A have no net change. From here on, we consider
only normal systems.

Comment. In traditional treatments of thermodynamics, Assumption 1 is not stated explicitly, but it is used,
for example when one states that any amount of work can be transferred to a thermal reservoir by a stirrer.

Theorem 1. Impossibility of a PMMZ2. If a normal system A is in a stable equilibrium state, it is
impossible to lower its energy by means of a weight process for A in which the regions of space R* occupied by
the constituents of A have no net change.

Proof. (Figure 1) Suppose that, starting from a stable equilibrium state Ag. of A, by means of a weight process
II; with positive work WA= = W > 0, the energy of A is lowered and the regions of space R* occupied by the
constituents of A have no net change. On account of Assumption 1, it would be possible to perform a weight
process I for A in which the regions of space R4 occupied by the constituents of A have no net change, the
weight M is restored to its initial state so that the positive amount of energy W4~ = W > 0 is supplied back
to A, and the final state of A is a nonequilibrium state, namely, a state clearly different from Ag.. Thus, the
zero-work sequence of weight processes (II1, ITz) would violate the definition of stable equilibrium state.

Second Law. Among all the states of a system A such that the constituents of A are contained in a given set
of regions of space R4, there is a unique stable equilibrium state for every value of the energy E4.

Lemma 1. Any stable equilibrium state A; of a system A is accessible via an irreversible zero-work weight
process from any other state A; with the same regions of space R4 and the same value of the energy E4.

Proof. By the first law and the definition of energy, As and A; can be interconnected by a zero-work weight
process for A. However, a zero-work weight process from A to A; would violate the definition of stable
equilibrium state. Therefore, the process must be in the direction from A; to As. The absence of a zero-work
weight process in the opposite direction, implies that any zero-work weight process from A; to A, is irreversible.

Mutual stable equilibrium states. We say that two stable equilibrium states Ag. and Bg, are mutual sta-
ble equilibrium states if, when A is in state As. and B in state Bse, the composite system AB is in a stable
equilibrium state. The definition holds also for a pair of states of the same system: in this case, system AB is
composed of A and of a duplicate of A.

Thermal reservoir. We call thermal reservoir a closed and always separable system R with a single con-
stituent, contained in a fixed region of space, with a vanishing external force field, and with values of the energy
restricted to a finite range such that all the stable equilibrium states of R are mutual stable equilibrium states.

Comment. Every single-constituent system without internal boundaries and applied external fields, and with a
number of particles of the order of one mole (so that the simple system approximation as defined in Ref. [1,
p-263] applies), when restricted to a fixed region of space of appropriate volume and to the range of energy
values corresponding to the so-called triple-point stable equilibrium states, is a thermal reservoir.

Assumption 2. Equivalent thermal reservoirs. If R’ and R” are thermal reservoirs with the same con-
stituent, then every stable equilibrium state of R’ is in mutual stable equilibrium with any stable equilibrium
state of R”. Then, R’ and R” are called equivalent thermal reservoirs.

*Universita di Brescia, Italy, beretta@ing.unibs.it
fUniversita di Bologna, Italy, enzo.zanchini@unibo.it
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Figure 1: Schematic illustration of the proof Figure 2: Schematic illustration of the processes used to
of Theorem 1. define the temperature of a thermal reservoir.

Reference thermal reservoir. A thermal reservoir with a constituent chosen once and for all, will be called
a reference thermal reservoir. To fix ideas, we will choose water as the constituent of our reference thermal
reservoir.

Standard weight process. Given a pair of states (A, As) of a system A and a thermal reservoir R, we call
standard weight process for AR from A; to A, a weight process for the composite system AR in which the end
states of R are stable equilibrium states. We denote by (A1R1 — A2R2)*V a standard weight process for AR
from A; to Az and by (AER)syY 4, the corresponding energy change of the thermal reservoir R.

Assumption 3. Every pair of states (A;, Az2) of a system A can be interconnected by a reversible standard
weight process for AR, where R is an arbitrarily chosen thermal reservoir.

Theorem 2. For a given system A and a given reservoir R, among all the standard weight processes for AR
between a given pair of states (A1, Ag) of A, the energy change (AE™)%" ,  of the thermal reservoir R has a
lower bound which is reached if and only if the process is reversible.

The proof of Theorem 2 is omitted here, for brevity.

Theorem 3. Let R’ and R” be any two thermal reservoirs and consider the energy changes, (AERl)SAerj‘Z’

and (AER”)Z“?X;’ respectively, in the reversible standard weight processes Il4p = (A1 R} — A3 R5)™™ and
MMap = (AR} — AgR'Q’ )™, where (A;, Ay) is an arbitrarily chosen pair of states of any closed system A.
Then the ratio (AE® )5y /(AER )5y

a) is positive;

b) depends only on R’ and R, i.e., it is independent of (i) the initial stable equilibrium states of R’ and R”,
(i) the choice of system A, and (%) the choice of states A; and As;

¢) is unity if R and R” are equivalent thermal reservoirs.

The proof of Theorem 3 is omitted here, for brevity.

Temperature of a thermal reservoir. (Figure 2) Let R be a given thermal reservoir and R° a reference

thermal reservoir. Select an arbitrary pair of states (A;, Az) of a system A and consider the energy changes

(AER)5™SY and (AERO)Z“;TE‘; in two reversible standard weight processes from A; to Ay, one for AR and the

other for AR®, respectively. We call temperature of R the positive quantity

(ABR)SY

Tr = Tro ——a—2 1
R R (AERO):XZTKZ ’ ( )

where Tro is a positive constant associated arbitrarily with the reference thermal reservoir R°. If for R° we

select a thermal reservoir having water as constituent and we set Tro = 273.16 K, we obtain the Kelvin tem-

perature scale. Clearly, the temperature Tr of R is defined only up to an arbitrary multiplicative constant.

Corollary 2. The ratio of the temperatures of two thermal reservoirs, R’ and R”, is independent of the choice
of the reference thermal reservoir and can be measured directly as
Tw _ (AB%)3g o)
Trr  (AER")SvY
where (AERl)i‘“irj‘z’ and (AER”)Z“?X;’ are the energy changes of R’ and R” in two reversible standard weight
processes, one for AR’ and the other for AR”, which interconnect the same pair of states (A, As).

Proof. Let (AERO)XYE;’ be the energy change of the reference thermal reservoir R° in any reversible standard



weight process for AR® which interconnects the same states (A1, Az) of A. From Eq. (1) we have

(AER ysey (ABR" sy
Tr =Tre rmoyswier + Lr" =Tre posaier (3)
(AER? )y (AER? )y

so that the ratio Tr//Tr is given by Eq. (2).

Corollary 3. Let (A;, A3) be any pair of states of system A, and let (AER)SAWITE‘Z’ be the energy change of
a thermal reservoir R with temperature Tg, in any reversible standard weight process for AR from A; to As.
Then, for the given system A, the ratio (AER)5"§Y/ T depends only on the pair of states (A1, As), i.e., it is
independent of the choice of reservoir R and of its initial stable equilibrium state R;.
Proof. Let us consider two reversible standard weight processes from A; to As, one for AR’ and the other for
AR, where R’ is a thermal reservoir with temperature Tr and R” is a thermal reservoir with temperature
Tr». Then, equation (2) yields

(AEM )3y (ABT )y "

TR/ TR//

Definition of (thermodynamic) entropy, proof that it is a property. Let (4; , A2) be any pair of states
of a system A, and let R be an arbitrarily chosen thermal reservoir placed in the environment B of A. We call
entropy difference between As and A; the quantity
AER swrev
s - s = EE T (5)
Tr

where (AER)XYE;’ is the energy change of R in any reversible standard weight process for AR from A; to As,
and Tg is the temperature of R. On account of Corollary 3, the right hand side of Eq. (5) is determined
uniquely by states A; and As; therefore, entropy is a property of A.
Let Ag be a reference state of A, to which we assign an arbitrarily chosen value of entropy S{J“. Then, the value
of the entropy of A in any other state A; of A is determined uniquely by the equation
(AR

Sf:Sé4— TR ) (6)

where (AER)Z“KX‘; is the energy change of R in any reversible standard weight process for AR from Ag to A,
and Tp is the temperature of R. Such a process exists for every state A;, on account of Assumption 3.

Theorem 4. Additivity of entropy differences. Cousider the pairs of states (C; = A1 By, Co = A3Bs) of
the composite system C' = AB. Then,

SﬁfBz _521531 =53 — S+ 8P -5sP . (7)

Proof. Let us choose a thermal reservoir R, with temperature Tg, and consider the sequence (Ilag, IIgg)
where I14p is a reversible standard weight process for AR from A; to Ag, while Ilgg is a reversible standard
weight process for BR from Bj to By. The sequence (Ilag, IIpRr) is a reversible standard weight process for CR
from C; to Cs, in which the energy change of R is the sum of the energy changes in the constituent processes
Isr and Igg, i.e., (AER)EE = (AER)SSY 4+ (AER)F7SY. Therefore:

AENE (AP | (ARRE .
Tr Tr Tr .
Equation (8) and the definition of entropy (5) yield Eq. (7).

Comment. As a consequence of Theorem 4, if the values of entropy are chosen so that they are additive in the
reference states, entropy results as an additive property.

Theorem 5. Let (41, As) be any pair of states of a system A and let R be a thermal reservoir with temperature
Tgr. Let I14Rgiy,y be any irreversible standard weight process for AR from A; to As and let (AER)i‘“iin be the
energy change of R in this process. Then

AER swirr
CI) Wi Sf— g (9)
Tr
Proof. Let I14prev be any reversible standard weight process for AR from A; to As and let (AER)Q"ZTE‘; be the
energy change of R in this process. On account of Theorem 2,

(AE®)RT, < (MBI, - (10)



Since T is positive, from Eqgs. (10) and (5) one obtains

AER swirr AER swrev
L T;A1A2 <t TI)%AW =S8 — s (11)

Theorem 6. Principle of entropy nondecrease. Let (A1, A2) be a pair of states of a system A and let
(A; — As)w be any weight process for A from A; to Ay. Then, the entropy difference S3' — S¢! is equal to zero
if and only if the weight process is reversible; it is strictly positive if and only if the weight process is irreversible.

Proof. If (A; — As)w is reversible, then it is a special case of a reversible standard weight process for AR in
which the initial stable equilibrium state of R does not change. Therefore, (AER)Z“?X;’ = 0 and by applying
the definition of entropy, Eq. (5), one obtains
AER swrev
S;‘fsf‘:,w:o_ (12)
Tr

If (A1 — As)w is irreversible, then it is a special case of an irreversible standard weight process for AR in which
the initial stable equilibrium state of R does not change. Therefore, (AER)Q"‘?XQ = 0 and Equation (9) yields

R\swirr
(AE®)ATA,
Tr
Moreover: if a weight process (A; — Ag)w for A is such that S3' —S{* = 0, then the process must be reversible,
because we just proved that for any irreversible weight process S3' — Si* > 0; if a weight process (A; — As)w

for A is such that S5 — S* > 0, then the process must be irreversible, because we just proved that for any
reversible weight process S35' — Sf* = 0.

St — St > — =0 . (13)

CONCLUSIONS

A general definition of thermodynamic entropy [2] is presented, based on operative definitions of all the concepts
employed in the treatment, designed to provide a clarifying and useful, complete and coherent, minimal but
general, rigorous logical framework suitable for unambiguous fundamental discussions on Second Law implica-
tions.

Operative definitions of system, state, isolated system, environment of a system, process, separable system, and
system uncorrelated from its environment are stated, which are valid also in the presence of internal semiper-
meable walls and reaction mechanisms. The concepts of heat and of quasistatic process are never mentioned,
so that the treatment holds also for nonequilibrium states, both for macroscopic and few particles systems.

A definition of thermal reservoir less restrictive than in previous treatments is adopted: it is fulfilled by any
single-constituent simple system contained in a fixed region of space, provided that the energy values are re-
stricted to a suitable finite range. The proof that entropy is a property of the system is completed by a new
explicit proof that the entropy difference between two states of a system is independent of the initial state of
the thermal reservoir chosen to measure it.

The definition of a reversible process is given with reference to a given scenario, i.e., the largest isolated sys-
tem whose subsystems are available for interaction; thus, the operativity of the definition is improved and the
treatment becomes compatible also with old [3] and recent [4] interpretations of irreversibility in the quantum
theoretical framework.

References

[1] E.P. Gyftopoulos and G.P. Beretta, Thermodynamics. Foundations and Applications, Dover, Mineola, 2005
(first edition, Macmillan, 1991).

[2] For the criteria which identify the entropy of thermodynamics among the many other concepts also called
entropy, see E.P. Gyftopoulos and E. Cubukcu, Entropy: Thermodynamic definition and quantum expres-
sion, Phys. Rev. E, 55, 3851 (1997).

[3] See, e.g., G.N. Hatsopoulos and G.P. Beretta, Where is the entropy challenge?, in Meeting the Entropy
Challenge, AIP Conf. Proc. Series, Vol. 1033, 2008, p. 34; G.P. Beretta et al., Quantum thermodynamics:
a new equation of motion for a single constituent of matter, Nuovo Cimento B, 82, 169 (1984).

[4] See, e.g., C.H. Bennett, The second law and quantum physics, p. 66, and S. Lloyd, The once and future
second law of thermodynamics, p. 143, in Meeting the Entropy Challenge, AIP Conf. Proc. Series, Vol.
1033, 2008; S. Goldstein et al., Canonical typicality, Phys. Rev. Lett., 96, 050403 (2006); L. Maccone, A
quantum solution to the arrow-of-time dilemma, arXiv:quant-ph 0802.0438.



Thermal Diffusion Coefficients in Multicomponent Mixtures:

Comparison between experimental and empirical values.

Pablo Blanco®?, David A. de Mezquia?, M. Mounir Bou-Ali%, Jose A. Madariaga®, Carlos

Santamaria® and J. Karl Platten®*

YForschungszentrum Juelich GmbH, IFF-Weiche Materie, D-52428 Juelich, Germany
’MGEP Mondragon Goi Eskola Politeknikoa, Loramendi 4, 20500 Mondragon, Spain
3UPV University of Basque Country, Apdo. 644, 48080 Bilbao, Spain
*University of Mons-Hainaut, 7000 Mons, Belgium
p.blanco@fz-juelich.de

Introduction

Larre et al.' proposed an empirical additive rule to predict the thermal diffusion coefficient of a component
in a ternary mixture from the combination of the corresponding thermal diffusion coefficients of the binary
mixtures. More recently, Bou-Ali and Platten* determined the thermal diffusion coefficients of the three
components in the ternary mixture 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB) and
normal dodecane (nC12) with mass fraction ratio 1:1:1 at 25°C. They verified the empirical additive rule
and the results showed that this additive rule’ was “not too bad” at least for the only case that was
investigated. Leahy-Dios et al.® have provided the thermal diffusion coefficients of the components in the
ternary mixtures composed of normal octane (nCg), normal decane (nCyo) and 1-methylnaphthalene (MN)
with mass fraction ratios 1:1:1 and 1:1:4 at 22.5°C, using the same experimental technique as in Ref. [2].
They pointed out that for the mixture with mass fraction ratio 1:1:4 the additive rule' does not work.
Therefore, the main goal of this study is to extend the previous studies to more ternary mixtures, especially

with different mass fraction ratios, in order to verify the empirical additive rule®.

Summary

In this study, we present a comparison between experimental results with ternary mixtures obtained from
two different configurations of thermogravitational columns, cylindrical and parallelepiped or flat. Thermal

diffusion coefficients of six ternary mixtures composed of 1,2,3,4-Tetrahydronaphthalene-Isobutylbenzene-
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nDodecane and 1,2,3,4-Tetrahydronaphthalene-lsobutylbenzene-nDecane ~ with  different  mass
concentrations are determined at 25 °C. Thermal diffusion coefficients of thirteen binary mixtures
composed of various combinations and mass fractions of these four liquids were also determined at 25 °C.
The experimental results show that the thermal diffusion coefficients of the components in ternary mixtures
can be determined reasonably accurately from a suitable combination of their corresponding thermal
diffusion coefficients in binaries with specific concentration of the components’. Additionally, we propose

new correlations that improve the prediction of the ternary thermal diffusion coefficients:

i\ Hik i H; i M
i ) i ) i k
(DT )ijk = (DT )ij CC;—+ (DT )ik CiCy —
ijk o Uik
D} is the thermal diffusion coefficient of i component in the mixture. & is the thermal expansion

coefficient and 4« is the dynamic viscosity. The subscripts of & and  indicate the components of the

binary or ternary mixtures.
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Magnetic nanoparticles and ferrocolloids have interesting medical application possibilities. One the
most popular novel idea is magnetic hyperthermia of tissues, particularly for cancer treatment.
Unsteady magnetic field of relatively low amplitude and of median frequency (20 — 80 kHz) may cause
energy dissipation in colloidal particles of up to 1 — 2 W/g. Such a heating intensity is quite enough to
realize the medical hyperthermia treatment. However, besides the heating measurements it is important
to investigate the dynamics of particle transfer in tissues because their heating intensity depends on the
particle concentration.

The present paper is devoted to studying the ferroparticle transfer in non-isothermal capillary porous
layer in the presence of a steady uniform magnetic field. The mass transfer experiments are performed
employing two equa cylindrical volumes kept at different temperatures and united by chemically
stable wide-pore capillary layer. The examined ferrofluid consists of magnetite nanoparticles coated
with oleic acid and suspended in tetradecane. First experiments [1] showed that the measured
thermoosmotic pressure difference is directed toward the temperature gradient. The unsteady pressure
difference primarily grows and after reaching a maximum starts to decrease exponentialy.
Homogeneous magnetic field, directed normally to the membrane, causes a remarkable growth of the
pressure difference. If the magnetic field is aligned parallel to the membrane, the observed pressure
changes are significantly less.

The experimental results are interpreted in frame of linear theory of irreversible thermodynamics [2].
Three fluxes j; (the flow of solvent j,, the particle flux j, and the heat flux j3) contain three summands
which are proportional to thermodynamic driving forces V; (gradients of pressure P, particle chemical
potential @, and temperature T). In long time experiments the unsteady pressure difference relaxesto a
zero. This concedes assuming that the mass transfer through the porous layer is influenced mostly by
osmotic processes whereas the particle transport (convective, diffusion and thermodiffusion) is small.
Under such simplification there arises a possibility to calculate from pressure measurements the
filtration coefficient o, the coefficient of osmosis o, and that of thermoosmosis o;3. The Onsager
relations o= oy allow evaluating also the coefficient of convective particle transfer o,;. Obtained
values of these coefficients confirm the assumption of predomination of filtration and osmosis in the
examined system. External magnetic field induces an additional pressure difference across the porous
layer and evokes an increase in the chemical potential of particles [3]. Due to dependence of fluid
magnetization on both the particle concentration and the temperature, the normal field effects manifest
themselves as an increase in thermoosmotic pressure and some reduction of solutal osmosis.
Longitudinal magnetic field causes only small changes in particle mass diffusion transfer. The
calculation results agree relatively well with experiments.
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In this investigation we develop a computational framewfrkoptimal reconstruction of isotropic constitutive rela
tionships between thermodynamic variables based on measumts obtained in a spatially—extended system. In other
words, assuming the constitutive relation in the followgeneral form

1)

thermodynami¢
“force”

flux = k(state variable)s{thermOdynamT,

our approach allows us to reconstruct the dependence ofahsport coefficienk on the state variables consistent with
the assumed governing equation(s). Constitutive relatiothe form (1) arise in many areas of nonequilibrium thedgro
namics and continuum mechanics. To fix attention, but witlhmas of generality, in the present investigation we focus o
a heat conduction problem in which the heat flurepresents the thermodynamic flux, whereas the tempemgtadéent
OT is the thermodynamic “force”, so that relation (1) takesghpecific form

g(x) =k(T)0OT, XeQ, (2)

whereQ € R", n= 1,2 3 is the spatial domain on which the problem is formulated.née that by assuming the function

k : R — R to be given by a constant, we recover the well-known linearrieo law of heat conduction. While expressions
for the transport coefficients suchlgd) are typically derived using methods of statistical therymaics, in the present
investigation we will show how to reconstruct the functik(T) based on some available measurements of the spatial
distribution of the state variabl& combined with the relevant conservation law. Such a tealicpuld be useful to
systematically adjust the form of the constitutive relasibip derived theoretically to better match actual experital
data. Combining constitutive relation (2) with the consgion of energy, we obtain a partial differential equati®DE)
describing the distribution of the temperatirén the domair corresponding to the distribution of heat sourge€2 — R

and suitable boundary conditions (for example, of the Digttype)

-0 k(T)OT]=g inQ, (3a)
T=Tp onoQ, (3b)

whereT, denotes the boundary temperature. We note that, for albgaddT, we should havé(T) > 0 which follows
from the second principle of thermodynamics, but is alsaegl for the mathematical well-posedness of elliptic lbun
ary value problem (3). The specific problem we address inithisstigation is formulated as follows. Given a set of
“measurements]Ti}M, of the state variable (temperatufE)at a number of point§x;}M ; in the domainQ, we seek to
reconstruct the constitutive relatiéT) such that solutions of problem (3) obtained with this re¢tted function will

fit best the available measurements. This is in fact an exaofdn “inverse problem” i.e., one in which one tries to de-
termine the cause (i.e., the constitutive relation) cqoesling to some known effects (i.e., pointwise measuresnathe
temperature field). An approach commonly used to solve s&/problems consists in reformulating them as minimization
problems. This is done by defining the cost functiohalR — R as

A 12
s02 53 [f-Touk]” @

where the dependence of the temperature Tiglck) on the form of the constitutive relatidn= k(T) is given by governing
equation (3). Assuming that the functiokid) characterizing the constitutive relation belong to a Hill§inction) space
X, the optimal reconstructiokis obtained as the minimizer of cost functional (4), i.e.,

k=argmine 7(K). (5)
1
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Figure 1: The figure represents (solid line) the actual canste relationk(T) and (dotted line with symbols) its optimal
reconstructiork(T) obtained using the proposed algorithm starting from (ddsime) a constant valuky as the initial
guess. The measureme#is}™; were obtained a¥l = 10 points uniformly distributed in over the domdin= [—1,1].

The minimizerk is characterized by the first—order optimality conditionsiath require the Gateaux differential of cost
functional (4), defined ag’(k;K') = lime_oe 1[J(k+€k') — 7(k)] to vanish for all perturbation < X, i.e.,

7 (kK)=0. (6)

The minimizerk can be computed with the following gradient descent algmiasR = lim,_» k™, where

KO e g ™) ne1
{ )

kY =k,

in which Oy 7 (k) represents thegradient of cost functional? (k) with respect to the control variable T is the length

of the jump along the descent direction at theh iteration, whereagy is the initial guess taken, for instance, as a
constant corresponding to a linear constitutive relat®n ¢r some other approximate theoretical prediction. Rerdake

of clarity, formulation (7) represents the steepest—datsaigorithm, however in practice one typically uses moresaded
minimization techniques, such as the conjugate gradietit@deor one of the quasi—Newton techniques [1]. We note that
since minimization problem (4)—(5) is in general nonconwaadition (6) characterizes onlylacal, rather tharglobal,
minimizer.

The key ingredient of minimization algorithm (7) is comptiia of the cost functional gradieft, 7 (k). We emphasize
that, sincek = k(T) is a continuous variable, the gradidnt (k) represents in fact an infinite—dimensional sensitivity
of J(k) to perturbations ok(T). In our presentation we will show that the gradient can baioled from the Gateaux
differential using the Riesz representation theorem

J'(kK) = (OxI (k). K) . (8)

where(-,-) x represents the inner product in the Hilbert spAgeand suitably defineddjoint variables[2]. These adjoint
variables (Lagrange multipliers) are obtained from theiSoh of the correspondinagdjoint systemwhich is at the heart of
the proposed reconstruction algorithm. Since in genevarse problems often tend to be ill-posed, care must be taken
perform suitable regularization. We add that problems incWithe transport coefficieftis a function of the space variable

2



X, rather than the state variabile i.e.,k = k(x), have received some attention in the literature [3], anchare relatively

well understood. The originality of our contribution cosisi in that, in contrast to such “parameter estimation” s,

we address estimation of state—dependent, and therefoliaaar, constitutive relations. We demonstrate that, emster

of fact, the mathematical structure of this new problem igegdifferent from the structure of the parameter estinratio
problem. In Figure 1 we present some sample results obtaiftbdour approach in which we were able to reconstruct
the actual constitutive relatiok(T) that was used to obtain the initial measurements. Our futtoek will focus on
generalizing our approach to more complex systems arisifigid mechanics and nonequilibrium thermodynamics. This
will include problems governed by time—dependent equatéxpressing the conservation of mass, momentum and energy,
and involving also constitutive relations with anisotmpiansport coefficients.
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The nonequilibrium radiation of photons by disordered nanoemitters incorporated into three-dimensional (3D)
clusters in percolation solids is an area of active research. If the concentration of clusters exceeds a certain threshold
value, then in the system it is formed spanning (infinite) cluster, penetrating the entire volume. This cluster
qualitatively changes the dynamic properties of the medium and produces a generalized conductivity in the system
which originally does not possess such a property. In such geometry, the spanning cluster serves as the "backbone",
or a set of bonds, through which the field radiation of nanosources can flow.

The percolation problem is concerned with elementary geometrical objects (spheres, sticks, sites, bonds, etc.) placed
randomly in a d-dimensional lattice or continuum. The objects have a well-defined connectivity radius, and two
objects are said to communicate if the distance between them is less than this radius. One is interested in how many
objects can form a cluster of communication, and especially, when and how the clusters become infinite.

The order parameter Ps in such a medium is defined as the ratio of the number of pores belonging to the spanning
cluster to the general number of pores. It is obvious that Ps is distinct from zero only when exceeding the threshold
concentration (0.31 for 3D case).

After formation of the spanning cluster, the opportunity to incorporate the nanoemitters through such the opened
cluster structure becomes possible. It is important that the cross-section of clusters normally exceeds the field
wavelength; therefore, such a network forms the open waveguide system by means of which the passage of an
intensive laser short pulse behaves as the field pump. As a result, the two-level nanoemitters incorporated into such
a cluster can be raised to the excited state. For simplification of the problem, we have used the natural assumption
that nanosources are incorporated only in those clusters which have a connection with the entrance (input for laser
pump) side of the sample. Since the spatial cluster structure in the medium does not change with time, the
corresponding order parameter Ps is a static property of the system. However, the situation becomes more
complicated for the case of nonequilibrium radiating nanoemitters incorporated in such disordered structure.

The analysis of such a system consists of two steps, and in general it requires quite long computations. The first
step deals with identification of the spanning cluster Ps as a function of probability occupation p. In the second step,
the field properties of radiating nanoemitters incorporated into the percolation structure (known from the first step)
are calculated with the use of technique FDTD.

We studied the field radiation of disordered nanoemitters incorporated in three-dimensional spanning clusters in a
percolation material. If the concentration of defects exceeds the threshold value, in the system a spanning cluster
penetrating the entire medium is formed. The intensity of the radiated field plays the role of the dynamic field order
parameter at the percolation phase transition. The subcritical clusters with nanoemitters represent a low-density
statistically disordered phase. However, at the supercritical state with the spanning cluster fulfilled by nanoemitters
occurs the raise of field intensity that allows to generate a high-density coherent field state (statistically ordered
phase). In such a situation, the result is different for lossless and lossy mediums. For material with small losses, the
long-term coherence arises in the supercritical area close to the percolation threshold. As a result, the dynamic non-
monotonic behaviour of the field order parameter is formed. We found that such a property can be predicted from a
simple 1D model that allows us to conclude that such a nonequilibrium behaviour emerges due to high contribution
of the coherent nanoemitters in the area closely to the threshold of percolation.

As a result of numerical experiments, we have found that at the supercritical concentration of disordered
nanosources the intensity of the field radiation increases sharply. In the lossy medium, or for emitters with random
phases, the field order parameter Pe has well known equilibrium behaviour. However, the situation changes
essentially for the coherent radiated nanoemitters in materials with small losses due to arising of field long-term
coherence. As a result, the dynamic non-monotonic behaviour of the field order parameter raises that allows to reach
the optimal field intensity already at p near 0.5.

This effect can allow the use of the disordered optical nanostructures with incorporated radiating nanoemitters in
various applications of information technology. Since the position of the maximum field order parameter depends on
the value of the source phases, it also allows the measurement of the level of coherency photons in disordered
nanostructures.
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Abstract

The diffusive regime of the drop evaporation process is investigated in the work on the basics of the fundamental
equations of the linear irreversible processes thermodynamics. Therefore the full diffusion equation is used to take
into account all the peculiarities of the investigated system on the very beginning of the investigation process. As the
result the equation that describes the temperature distribution around the droplet is obtained. Mechanisms to explain
the absence of the buffer gas diffusion towards the evaporating drop while the concentration gradient exists are
found. The method to find Onsager’s phenomenological coefficients from the drop evaporation experiments is
proposed.

Introduction

Droplet aerosols are widely used in the different fields such as chemistry, medicine, and atmosphere physics. In
many situations the evaporation of the drops from the substrate surface is of great interest [1]. Such systems require
a lot of different factors to be taken into account [2, 3], but in any case the basics for the understanding the whole
process is the model of the free drop evaporation in the buffer gas. The usual way to describe that process is to use
the Fick’s law with the constant diffusion coefficient and in such a way to calculate the diffusive flow. For the
system in the thermostat this law is represented by the next equation:

on
J = —47Z'p —D : (1)

op

where 0 is the radius in the spherical coordinates, D is the diffusion coefficient and N is the vapor
concentration. It should be emphasized that in that case the diffusion coefficient is thought to be constant and is
calculated by the means of the kinetic theory [5]. The classical Maxwell’s formula could be obtained from that
equation that gives the result for the diffusive flow:

J =4zDr (n0 -n ), )

where N, =N ( r) - concentration in of the evaporating substance close to the drop, and N, - is the concentration

on the infinity. In the same time for the description of the real processes it is necessary to take into account a great
number of the different corrections to the equation (2). They are the Stefan’s flow correction, correctional terms that
appear from the drop temperature variations and so on [4]. The very important thing that is to be emphasized is that
all the correctional terms are introduced to the final result (2) but not to the original equation (1). Therefore, the
particular problem is solved and the result is being modified for the common problem. Such an approach could not
be called fundamental. Should be also mentioned that even consideration of all the correctional terms in some cases
is not enough to describe the experimental data [6].

In such a way we can make a conclusion that the problem of finding the exact thermodynamic theory of the
evaporation process, based on the fundamental equations of the linear irreversible process thermodynamics seems to
be of high importance. That means that the common diffusion equation that includes addends connected with all the
existing gradients should be solved and in such a way the characteristics of the process are to be found.

Model Description

The problem that is investigated in the work is the problem of the stationary drop evaporation process in the
diffusive regime. The buffer gas is thought to be not able to dissolve in the droplet. This condition gives us a
possibility to state that all the flows in the direction of the droplet are to be equal to zero. We assume that while
evaporating the droplet doesn’t change its shape and during all the process it stays ideally spherical. All the system
is treated as being in the thermostat and all the external fields are neglected.



The system of differential [7] equations that fully describes the suggested model is based on the fundamental
phenomenological law of the irreversible processes thermodynamics [8].
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Temperature gradient in the drop evaporation process and entropy production function
The system of differential equations (3) gives the possibility to find the temperature gradient that is to appear due to
the diffusion of the evaporating substance. We obtained the following result:

o,
aT aon, dn,
L —_ 4
dp IHy  H2 dp
oT T

As for the substance flow in contradiction to the classical approach the nonlinear flow dependence on concentration
difference near the drop and on the infinity is found (fig. 1)
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For the entropy production function the next equation is obtained:
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On fig.2 the entropy production function dependence on the concentration difference is shown.
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One may see that the dependence differs from the quadratic one. Therefore, Entropy effects consideration in the
mixture thermodynamic potentials leads to the quite strong difference of the obtained results from the classical one
with the constant diffusion coefficient.

Conclusions

From the obtained results one can make a conclusion that in the case of the diffusive regime of the drop
evaporation process the temperature gradient arises in the surrounding matter. The obtained results are in good
correspondence with the results for the methanol and ethanol drops evaporation [9]. The existence of such a gradient
allows explaining the absence of the buffer gas flow in the direction of the droplet when the concentration gradient
exists.

The suggested approach shows the strong stabilizing effect in the flow dependence on concentration difference.
For the simplest model of the mixture the entropy production function is very different from those obtained for the
constant diffusion coefficient model in classical approach.

Te method to evaluate Onsager’s kinetic coefficients from the drop evaporation experiments is proposed in the
work.

The obtained results show that not in all cases it is possible to use the Fick’s law with the constant diffusion
coefficient. In some cases it is necessary to take into account its dependence on all the local parameters.
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Properties of complex materials are not always localizable, since features as singularities interact
with one another at a distance which can become relevant at a convenient scale [1]. Nonlocal effects
become also important in miniaturized systems, such as various kinds of nano-wires and nano-tubes,
since even a small difference of temperature, or electrical potential, over a small scale length may
generate very high temperature gradients [2—4].

A simple way to take into account nonlocal effects is to introduce the gradients of the basic
thermodynamic fields into the constitutive equations describing the material behavior. In such a
case one is facing with weakly nonlocal continuum theories [5]. The classical formulation of second
law of thermodynamics [6], which restricts the form of the constitutive functions, requires that the
dissipation inequality

05+ 05,v; + (%)l > Q%v (1)
with o as the mass density, s as the specific entropy, 1 as the absolute temperature, r as the radiative
heat supply, v;,7 = 1,2, 3, as the components of the velocity, ¢; as the components of the heat flux,
must be satisfied in any thermodynamic process, namely by any solution of the local balances of
mass, linear and angular momentum and energy and, eventually, of additional governing equations
(not necessarily in the balance form) ruling the evolution of some other thermodynamical parameters
representing internal degrees of freedom of the system [7].

The most celebrated techniques for deriving the restrictions placed by second law of thermody-
namics on the constitutive functions are the Coleman-Noll [8] and Liu [9] procedures. In the absence
of any modification of the local form of first or second law of thermodynamics, both procedures lead to
the conclusion that only the fluxes are nonlocal while the entropy and the absolute temperature may
depend only on the unknown fields. Such a conclusion may generate serious discrepancies, because it
renders some important classes of nonlocal materials, such as the Korteweg fluids, incompatible with
second law [10, 11].

In order to circumvent these problems, and still remain in the framework of weakly nonlocal
thermodynamics,!, two different approaches can be found in the literature.

The first one modifies the local balance of energy, by supposing the existence of an energy extra-
flux u, due to the matter diffusion [15] or to the interstitial working of long range interactions [10, 16],
such that it reads

0e + 0e,vi — Tijvi 5 + ¢iyi — Uiy = 0T, (2)

with € as the specific internal energy and T;; = T};,¢,7 = 1,2, 3, as the components of the Cauchy
stress tensor .

The second one modifies the entropy inequality [17], by postulating the existence of an entropy
extra-flux k such that Eq. (1) becomes

*In this talk we present some recent results obtained in cooperation with D. Jou (Barcelona), A. Sellitto (Potenza)
and V. Triani (Potenza).

1t is worth noticing that a different theory, namely rational extended thermodynamics [12], postulates a local state
space and regards the fluxes as independent thermodynamic variables. In such a case problems arise in dealing with
some results from kinetic theory which would require a nonlocal state space, such as the celebrated Guyer-Krumhansl
[13, 14] heat transport equation.



%) r
Vi + (3 kii > 0. 3
gs,t+gs,v+(ﬂ (ki > e (3)

Since the two modifications above are not equivalent and lead to different sets of thermodynamic
restrictions, the choice of one of the two options should be decided on the base of additional infor-
mation, either from experiments or from kinetic theory. Furthermore, even if we assume one of the
two points of view above, problems arise in dealing with first order nonlocal constitutive equations,
i.e. with the main part of the nonlocal continuum theories. This is due to the fact that the classical
procedures allow the entropy to depend on the gradients of order n of the unknown fields if and only
if the constitutive functions depend on the gradients of order n + 1. It is clear that this leads again
to a local entropy in the case of first order non-locality [10, 15, 17].

The considerations above prove that in weakly nonlocal thermodynamics the form of the consti-
tutive equations for the energy and entropy fluxes, is an open problem which deserves consideration.

The aim of this presentation is to illustrate an alternative approach to the problem above, which
does not need to modify the basic thermodynamics represented by the classical balances of energy
and entropy, because a different method of exploitation of second law is applied. The basic idea is to
consider as additional constraints for the entropy inequality the gradient extensions of the governing
equations up to the order of the gradients appearing into the constitutive equations [11, 18, 19]. That
way, the number of the independent equations which constrain the entropy inequality is always equal
to the number of independent thermodynamic variables. The method yields a nonlocal entropy even
in the case of only first order non-locality.

As an application, we present some recent results concerning nonlinear heat conduction in minia-
turized systems and in crystalline dielectrics [20]. In this case a nonlocal entropy is particularly inter-
esting, since the nonlocal terms contribute important nonlinear terms in the heat transport equation.
Modelling heat transport in solids, we use the concept of non-equilibrium semi-empirical temperature
[21-23]. Such a concept is inspired by the essential idea that the heat flux is given by

¢ = —KpBi, (4)

with k a suitable function of the thermodynamic state variables, representing the thermal conductivity,
and § a dynamical non-equilibrium temperature. According to Fourier law, the equation (4) preserves
the heat flux in the inverted direction of the gradient of temperature, but in contrast with it, the
temperature differs from thermodynamic absolute temperature 6.

In the presence of first order nonlocal constitutive equations, such an approach is capable to
reproduce the lagging behavior, which is expected in heat conduction in small systems. Also, it
leads to nomnlinear generalizations of the celebrated Maxwell-Cattaneo [24] and Guyer-Krumhansl
[13, 14] equations, describing, respectively, the hyperbolic and diffusive-hyperbolic regime during heat
conduction in crystalline solids.

As a further example, a nonlocal thermodynamic model of helium II is presented.

As the conclusion, we present some applications of a new method of exploitation of second law of
thermodynamics, which allows the entropy to be nonlocal also in the absence of an extra-flux of energy
or entropy. Of course, our result does not mean that these extra-fluxes do not exist. For instance,
it is well known that in the the movement of a mixture, the effects of matter diffusion manifest
themselves in the appearance of an additional energy flux related to the chemical potential and to the
relative mass flux of each constituent [15]. We simply claim that, according to the generalized method
of exploitation, they are not essential to the end of conserving nonlocal terms into the constitutive
equation of the entropy. Hence, their effective presence should be decided only on the base of suitable
experimental results. Moreover, to our opinion, new experiments are necessary in order to decide
what is the most well-suited modification of the basic laws of thermodynamics in the presence of
extra-fluxes.

)
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Ivan Yarkovsky (1844-1902) was a Polish engineer working in Russia [1].
In his spare time, he was an amateur physicist, searching for a fundamental
theory of gravity [2]. In this framework, Yarkovsky discovered ‘his effect’. His
discovery fell into oblivion, until it was rediscovered about 1950. Today the
scientific literature has the tendency to investigate ever more detailed influences
on the Y effect. In contrast, the present paper aims at presenting a model as
simple as possible, in order to give basic properties of the Y effect.

The sun is assumed to be a spherical black body with radius Rs and surface
temperature Ts. At the sun’s surface a power density o7 is emitted. Here o
is the Stefan—-Boltzmann constant. During its way to a planet, the total power
is distributed over an ever increasing surface area, until the power density is
decreased by a factor f = R2/r?. Here r is the radius of the planet’s (circular)
orbit around the sun.

The planet is assumed to be a spherical black body with radius R,. In first
approximation, we may assume that the planet has a uniform surface tempera-
ture T,,. Writing the planet’s energy balance [3]

foT? 7TR12) = JT;l 47TR12) , (1)

yields the planet’s temperature:

szf/gTs. (2)

This result is thus obtained from the law of conservation of energy. One could re-
mark that the law of conservation of momentum is equally fundamental. There-
fore, the question arises how conservation of momentum influences the radiation
equilibrium of the planet. It is clear that the spherical shape and uniform tem-
perature of the planet results in a spherical symmetry of its (infrared) emitted
radiation. The resulting sum of all photon momenta is zero.

The Yarkovsky effect is caused by the fact that the temperature (and thus
the emitted radiation) of the planet is not uniform. Therefore we introduce a
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Figure 1: A planet illuminated by the solar constant F and emitting infrared
radiation, which causes a rebound force F'.

place-dependent temperature T'. In order to make the mathematics transparent,
we assume that the local T' is only dependent on the longitude ¢ and not on
the latitude 9 of the place. See Figure 1.

We replace the global equilibrium (1) by a local balance. Choosing ¢ = 0
for the sunrise meridian (i.e. the meridian with 6 o’clock a.m. time), we get:

T(p) = Tpv/7sin(p) ifp<m
0 ifo>mn, (3)

where T), is the temperature (2) from the uniform-temperature model. The
curve & = 0 in Figure 2 shows the resulting temperature profile T'(p). The
reader may easily verify that the average ¢ [[; T*dS = 5= [T*dy equals T,
Here S is the surface area of the planet: dS = R2cos(9)dddp. The average
(% [fg T*dS)Y/* is denoted as R4 by Essex et al. [4].

A non-uniform emission of photons causes a non-zero rebound force F' felt
by the planet. This force is directed away from the sun. No mechanical energy
is transferred to the planet: T.F = v .+ v Fy = 0F,. +v,0=0.

Whereas the uniform temperature (2) is not realistic (nights and days on
earth showing a same temperature), the result (3) is even less realistic. The
latter correctly predicts high day temperatures and low night temperatures,
but greatly exaggerates these temperature fluctuations.

There thus is need for a third, better model. It acknowledges that, on
real planets, temperatures are smoothed out. By heat storage, combined with
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Figure 2: A planet’s surface temperature 7', as a function of longitude .

rotation around the planet’s axis, heat is transported from the day side to
the night side. Therefore, we add to the energy balance a capacitive term.
Moreover, merely for mathematical convenience, we replace the linear capacitive
4

heat current by a non-linear one: K %. Assuming the north-south axis is
perpendicular to the ecliptic, we thus obtain the linear differential equation in
the unknown T4 (y):

dar

® — +T* = 7T sin ifo<m
it » sin(ep) @
= 0 ifo>m.

Here, the angle ® is a short-hand notation for Kw/o, where w is the angular

velocity of the planet spinning around its own axis. One finds the following
periodic solution:

1 X
T = 1 FoN) [ %1 ® exp(—¢/®) — ® cos(y) +sin(p) | T, for p <m
® X2
= THEII X1 exp(—go/(I))T; for o > 7,

where X is a short-hand notation for exp(n/®). The reader may check that
again the property & [[g T*dS = T} and thus R4(T) = T, holds. Figure 2



shows curves T'(¢). The curves T'(¢) display a maximum in the afternoon side
of the planet. In spite of the simplicity of our model, our curves are very similar
to the graphs published by Lorenz and Spitale [5] [6] and by Vokrouhlicky [7].
We note that now the tangential force F;(®) = £ £ R2 [ T* cos(¢) dy is non-
zZero.

Thus, because a planet with thermal inertia has its hottest side oriented away
from the sun, the net rebound caused by the emission of (infrared) radiation
has a component F; along the orbit of the planet around the sun. Therefore,

mechanical power is transferred:
3
L= ™ v
v.F = UtFt = —" —
c

o 2
P2+ 1 oR,T,

6
with a maximum for ® = 1. Thus (1) is replaced by
77_3 R2 L v
6 P P24+1 ¢
In first-order, we obtain the following average planet temperature:

f 2 P v
=+¢<Z1 (1+2 — -
Ra(T) 4 % ric)

foT} wR} = oT, AxR; + 0T,

The relative correction x is small. E.g. for the earth we find a number of the
order of —1075. The absolute Yarkovsky correction z7), is thus of the order of
—1 millikelvin.
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A MATHEMATICAL MODEL FOR CLONE EXPANSION OF T
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ABSTRACT. In this communication a mathematical model is presented trying
to look insight the dynamic of immunitary response to antigen attack.

In particular the dynamic of a single clone of lymphocites T repertoire is
considered during the two phase of first and second meeting with the antigen;
a dynamic typically involved in T cell base vaccination.

We have used a macroscopic approach considering the continuum as a mixture.
Local balances are then introduced for the density of the mixture and the
density of memory T cells together with the related momenta and involving
the effect of chemotaxis.
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Gibbs-Bogoliubov Variational Procedure with the
Square-Well Reference System

N.E. Dubinin
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The variational method based on the Gibbs-Bogoliubov inequality is
widely used for thermodynamic calculations of liquid metals. As a rule, the
hard-sphere (HS) reference system is used for this purpose. There are a
number of attempts to use other reference systems: the one-component-
plasma system [1], the charged-hard-sphere system [2], and the hard-sphere
Yukawa one [3]. Here, we perform variational calculations with the square-
well (SW) reference system. The analytical expression for the SW structure
factor is taken in the framework of the random phase approximation. The
Helmholtz free energy is minimized with respect to the core diameter, the
SW width, and the SW depth. This approach is applied to the liquid Na and
liquid K at 373K. The Animalu-Heine model pseudopotential and the
Vashishta-Singwi exchange-correlation function are used. Obtained results
are compared with results of works [1-3] and with our HS-reference-system
results.

We are grateful to the Russian Foundation for Basic Research for the
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Functions, not differential equations, are the definitive mathematical objects of
equilibrium thermodynamics. They are described as "the equation of state” suggesting only
one exists, but such equations take many forms for any particular physical system. Often the
relationships between the forms are obscure, unexplored, or even wrongly depicted as
external to thermodynamics.

Here we explore classical equations of state for ideal particles, photons, and
neutrinos. The usual equations of state are interpreted here as partial differential equations,
which lead to a unique, fully extensive equation of state. These forms are rarely, if ever,
expressed explicitly. They are designated as the principal equation of state. The principal
equation of state is a unique form that acts as a generator for all other forms of the equation
of state. Moreover, certain obscure properties, such as zero chemical potential for photons,
become plain to see. Despite their diverse physical contexts they have certain distinctive
properties in common, some of which are not fully understood.

The traditional equations of state for an ideal gas of different species are
U=NC,T
PV = NKT
N;) C
C=kT| In| =1 |- =X In(m;KkT) +
Hi { [V j K (m;kT) g:|

with the number N; of species i, summing to a total of N particles. The mass of a particle of
species i is m;, and g is a constant collecting a number of basic constants of nature. These
equations, involving intensive as well as extensive variables, are just different projections of
the principal equation of state U(S, V, {N;}), where the intensive variables come in as
coefficients in the total differential

dU =TdS — PdV + ) z;dN;
i

The full principal equation of state for the multi-component ideal gas reads



Nj

k G |N
) e Ci
h°Cy - ok NTT (&)Cv 1o exp S

where & accounts for internal degrees of freedom of species i while C; is the heat capacity per
particle for the species. This equation acts as a generator for all the usual equations through
differentiation and possibly keeping one of the variables constant. It is also the starting point
for calculating the Hessian or metric in thermodynamic geometry,

2
M=D% =] Y
OX;0X ;

where X is the full set of extensive arguments for U: S, V, {N;}.

U=

For a single-component monatomic ideal gas this principal equation of state reduces

3’ ( 5) N(N)Z” (2 Sj
U=——exp|—| —|—=| exp|-—
4 3) m\V 3 Nk

which has a striking resemblance to the expression for a van der Waals gas,

3 52 ( 5) N( N )2/3 (2 Sj aN?
U=——exp|—| — exp| —— |—
4z 3) m\V—bN INK) V

in which a and b are the van der Waals coefficients.

to

The principal equation of state for photons is

:3(@)”384/3
16\ oV

and for neutrinos

(s
56\ oV

In both cases c is the speed of light and o the radiation constant. The small numerical
difference arises because photons are bosons and neutrinos are fermions. Note that these
latter two equations do not depend on the particle number N, and consequently their chemical
potential x=0U/oN =0 . Furthermore, we note that the classical equation of state
P=(U/V)/3, often depicted as external to thermodynamics, also occurs for neutrinos, and it
arises directly from these equations. They also yield something less well-known but entirely
analogous for entropy: P/T=(S/V)/4.

The Hessians indicate that all principal equations of state considered here are convex
functions, but they also are all singular. Why? Is this a necessary property for all
thermodynamic systems?
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A first principle reciprocating quantum refrigerator approaching absolute zero Reciprocating refriger-
ators operate by a working medium shuttling heat from the cold to the hot reservoir. This requires external control
of the temperature of the working medium. At very low temperatures a quantum description of the working medium
is required where the control of temperature is governed by manipulating the energy levels of the system. A generic
working medium possesses a Hamiltonian that is only partially controlled externally:

ﬁ = ﬁint+ﬂemt(w) (1)

where w = w(t) is the time dependent external control field. Typically, the internal and external parts do not
commute [I:Imt, I:Iewt] # 0. Therefore, in general, the evolution operator U of the system’s operator algebra also does
not commute with ﬂ(t) As a result a state diagonal in the temporary energy eigenstates cannot follow adiabatically.
This fact, which is the source of quantum friction, has a profound effect on the performance of the heat pump(engine)
[1-4, 6].

Limitations of cooling toward absolute zero for systems with finite energy gap above ground state Almost perfect
adiabaticity is the key to low temperature refrigeration. Typically, the internal interaction leads to an uncontrollable
finite gap J in the energy level spectrum between the ground and first excited state. It is shown in the study that
this gap combined with unavoidable quantum friction leads to a finite minimal temperature, termed T/ above zero.
The reason is that such a gap, combined with a negligible amount of noise, prevents adiabatic following during the
expansion stage which is the necessary condition for reaching T, — 0. Theoretically the effect of the noise can be
described by a double commutator with the relevant operator associated with the noise [5]. The dynamics on the
expansion adiabat is analysed to reveal the deviation § from adiabatic following. A constant adiabatic parameter
allows to solve the equations of motion analytically. The solution shows a periodical alternation between frictionless
solutions to ones with profound friction [7].
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FIG. 1: Left: The minimum temperature as a function of the time allocated to the expansion adiabat Th. (bottom scale)
and [, number of times the system’s trajectory circles around the energy vector (the winding number -upper scale), for the
two noise models. The phase noise has a monotonic decrease of T.(min) reaching saturation as 7h,. — oo where T.(min) =
m. (Phe = [aresin(ge) — arcsin(é—i)] ) . Te(min) of the amplitude noise is monotonically increasing function
of time which means that short expansion times lead to the minimum temperature. If both amplitude and phase noise operate
simultaneously the minimum temperature will be obtained at the crossing point. Right: The heat drawn from the cold bath,
Q., as a function of cycle time with the time scheduling, w(t) resulting from the analytical solution on the adiabats . The
decrease of Q. both for short and long times is seen.

The coupled spin system model The model refrigerator is based on a working medium consisting of quantum systems
composed of an ensemble of two coupled spins. The performance of this model resembles a refrigerator with intrinsic



friction. We find that the optimal average cooling rate per cycle is exponentially decreasing when approaching
absolute zero, independently of the functional time dependence (scheduling) of the control field. It is shown, that
T is limited by the zero field splitting.

There are two families of refrigerator cycles; the "normal” cycles whose cycle times are much larger than period
determined by the energy splitting 27/, and the “sudden” cycles which are short relative to this period.

Normal cycles The trajectories in the space of the expectation values of the relevant operators are quantized,
according to the number of revolutions the trajectory traverses in that space The inverse minimal temperature
1/Tmi" is approximately linear in the allocated cycle time determined by the maximal cooling rate. The cycles show
non-isoentropic approach to absolute zero, which is to some extent a violation of one of Nernst’s interpretation of the
third law.

Sudden cycles These cycles have no classical analogues. Their energy entropy is much higher than their Von
Neumann entropy, which indicates large off diagonal elements in the density operators in the energy representation.
There is no time even on the isochores to equllibrate. The sudden cycles are far from the adiabaticity condition.
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FIG. 2: Refrigerator cycles in the frequency entropy plane. The Von Neumann entropy Sy n = —tr{plog p} (ABCD rectangle)
as well as the energy entropy Sg = — Y p; log p; are shown (p; is the population of energy level ¢). The hot and cold isotherms
are also indicated. Left: mormal cycle , both the expansion adibat and the compression adibat revolve exactly seven periods.
Right: sudden cycle
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Introduction

The calculation of the diffusion process is performed by setting up a
discretized partial differential equation (PDE) mass balance of the form:

% — _% + Ri (1)
ot 1674
Here shown for the one dimensional case. R; is the reaction term, Oc, / Ot 1s
the accumulation tem, and 0N, /dz is the flux term. The molar flux, N;, can

be calculated by diffusion theory of Fick also know as Fick’s law:

dc;

N, = _Bif
dz

2)

Which states that the flux is a linear function of concentration profile. Or the
molar flux may be calculated by the Nernst-Planck (NP) equation:

N, ox, xzF 0
: :_D;O : _D;O — ¢+ xius (3)
c, Oz RT oz :
~—— N——u———  Convection
Diffusion Migration

Where D; is the diffusivity between component i and the solvent s at

infinite dilution, also known as the diffusion coefficient. ¢, is the total
concentration, z; the ionic charge, z the length, ¢ the electrical potential, x;
the mol fraction, and u, the solvent velocity towards the wall.

The advantage of using the NP equation relative to Fick’s law is the term
related to the electrical potential d¢/0z also known as the migration term.

This term is central in electrolyte diffusion where the charges of ions
become important. One ion will influence the diffusion of other ions due to
charge interaction. The slower ions drag the faster due to the
pulling/pushing force from the ionic charge difference. For example a big
slow diffusing negative ion will drag smaller positive ions and the small
positive ions will pull the slow negative ion.



Improving the theory

The molal ionic strength (/) in mol’kg H,O is high in a number of
engineering diffusion relevant cases, eg. CO; corrosion and CO, capture and
storage (CCS). The ionic strength indicates that the solutions behave
thermodynamically non-ideally. Using the Fick’s law and the NP equations
may be inaccurate since ideality is assumed and they are therefore only
strictly valid at /<0.001 mol’kg H,O. In many cases both equations are used
outside the valid operation window. The NP equation can be extended to
include activity coefficients by the following as shown by Fosbel'

£:_Bifirii%_9ifﬂ%+xius 4)
c x 0z X, RT oz

t N

Where x; is the solvent concentration and I'; is the thermodynamic factor or
the thermodynamic correction factor, e.g. discussed by Taylor and Krishna®
for non-electrolyte mixtures. It represents the deviation from ideal diffusion
behaviour. Comparing the above equation to (3) shows that it requires minor
extensions to improve the calculation. A more complete but more complex
diffusion equation can be written as discussed by Fosbel'. The
thermodynamic correction factor (TCF) I';; is calculated by

éln(;/i (T,P,n))

ox;

1

I,=1+x

)

which is a function of the activity coefficient y derived with respect to
composition. In this work the electrolytic Extended UNIQUAC (UNIversal
QUAsi-Chemical) model by Thomsen et al.>” is used in the calculation of
the activity coefficient. It has previously proven to be acceptable for
predicting activities of mixed solvent electrolyte systems up high ionic
strengths.

It should be noticed that incorporating an activity coefficient model in the
diffusion equations may still impose limitation of the ionic strength, i.e. the
Debye-Hiickel limiting law activity coefficient model is only valid at /<0.01
mol/kg H,O and the extended Debye-Hiickel law is valid at /<0.1 mol/kg
H,0. The applicable window can be extended slightly by using the Davies
rule®’ instead, which is valid at /<0.3 mol/kg H,O. The Pitzer equation is
typically valid up to /=6 mol/’kg H,O. None of these models are by default
useable for mixed solvent systems.

Several fluid effects are not discussed in this study which needs to be
considered in full diffusion calculations. This is the case even though
activity coefficients are used in the diffusion equations or not. The effects
refer to the concentration dependency of the diffusivities and not to the
actual flux. These are the electrophoretic effect as discussed by Harned and
Owen® and Robinson and Stokes’, the viscosity, the porosity, and the direct
diffusivity concentration dependency discussed by Newman er al.'’,
Vignes'', and Umino and Newman .



An example system CO,-NaOH-MEG-H,0

In this work example calculations of TCF for the mixed solvent electrolyte
system CO,-NaOH-Mono ethylene Glycol(MEG)-H,O will be shown.
Results will be based on the Extended UNIQUAC model given by Fosbel et
al.'. With the aim of showing how large an effect the TCF may have on
diffusion. This is done in order to illustrate the deviation between the
original Nernst-Planck formulation (3) and the improvements by using (4).
The TCF gives the difference between the two equations. A T'; of 1.5
indicates that the flux of the component would be 50% higher in the real
non-ideal system compared to infinite dilution. The calculation of I’
requires a thermodynamic activity coefficient model and a speciation
routine. The speciation routine calculates the equilibrium composition from
the given 7, P, and concentrations. The thermodynamic model calculates I';
as function of 7, P, and equilibrium composition.
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FIGURE 1. Thermodynamic factors, I';, as function of added NaHCO; salt. Saturation
by NaHCO; is reached at the vertical black line. /,,,, indicates the maximum ionic strength
obtained at saturation.

Figure 1 shows an example calculation of TCF for sodium bicarbonate in
water. Results will be shown for the mixed solvent case and comparison
between the cases will be made. A number of important conclusions may be
drawn for the mixed solvent calculations which will be revealed by the
results of this work. The figure shows that the ionic strength of the systems,
Lnax, 1s approximately 1.2 mol/kg H,O at saturation. This is an indication
that the solutions behave non-ideal. The thermodynamic factors, I';;, of i=
HCOj is approximately 1 below 0.3 mol NaHCOs/kg total. It illustrates that
above this concentration the effective diffusion coefficient is considerable
different from 1. It is 20 % higher at saturation compared to infinite dilution.
I of i=Na" is 0.55 at saturation which indicates the effective diffusivity is
55 % of the value at infinite dilution. Consequently the diffusion of Na" is
lower at saturation compared to infinite dilution. The concentration of CO32'
is low in this solution, 0.01 molal, and I'; of i=CO;” is consequently also



close to one, here 1.02. The concentrations of the remaining components are
close to infinite dilution and I'; of these compounds are consequently [';~1.
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INTRODUCTION

Four transport coefficients characterize the thermoelectric properties of materials: the thermal
conductivity Kk, the thermoelectric power or Seebeck coefficient S, the electric conductivity o, and the
Peltier coefficient . The first three are profusely measured and studied: dozens of papers are published
every year. Nevertheless from the last coefficient the number of references are very limited: they do not
reach a paper for year. In this unequal result the Onsager reciprocal relation (ORR) 7 =TS has a
decisive influence. In fact the easiness and accuracy of the techniques which measure the Seebeck
coefficient obviates the need for Peltier coefficient measurements. But the ORR which is founded in
statistical mechanics needs to be experimentally checked in a few cases at least [1]. Therefore the
experimental confirmation of this relation depends on the preciseness and accuracy of Peltier coefficient
measurements. A review of this subject has been developed in this work.

In order to describe the thermoelectric processes in an advantageous way, the observable
formulation has been used [2-4]. This is characterized by the electric potential measured at the probe
terminals Ay and for the heat flux which the conductor laterally dissipates J,, (figure 1). In this

formulation both the electrochemical potential of the electrons and the energy flux play the central role.
The energy balance provides the basic relationships among the observables and the Peltier and Thomson
coefficients.

Figure 1. Observables Ay =" —y' and J, in the conductor X. The terminals of probes Z are at the

same temperature 7.

The interest for studying the Peltier coefficient is also due to this coefficient forms part of the
expressions which define both the Thomson coefficient T and the figure of merit ZT . The first combines
the effect of two basic coefficients 7 = dzr/dT - S. And the second relates three of them ZT =ow’/Tk .
When one applies the ORR, we deduce the well-known expressions T = T(dS/dT) y ZT = O'SZT/K. The
first provides the bases to evaluate dS/dT from measurements of Thomson’s coefficient. And the second
is relevant to technological questions of great importance, such as the construction of solid state energy



conversion devices. Materials with high thermoelectric figure of merit are promising candidates for use in
thermoelectric power generation.

THEORY

Transport equations

The evaluation of the transport coefficients is carried out in filiform systems from the
measurement of several observables. In these wires all the flows and forces are parallel to the x-direction.
The transport equations of the thermoelectric phenomena are usually expressed in a local formulation

dr u
Jy=kA—+|m-—=]I 1
v dx ( e) M
i
(Aue/e)=SdT_ 1 I (2)
dx dx OA

where J, is the energy flux, 4 is the cross-section area, [, is the electrochemical potential of the

electron, e > 0 is the magnitude of the electron charge, and I is the electric current. Here, the positive
direction of the fluxes J,, and I is the opposite of the coordinate x (Figure 1).

To evaluate the transport coefficients of a material we need to know the local values of the
following quantities J,, T, i, and I. Some of them can be directly measured, i.e. T and I. The other

quantities need to be determined from the observable electric potential Ay =" —1' measured between
the terminals of probes Z connected to sections I and II, and the heat flux J, which laterally departs

from the conductor towards the surroundings between the sections I and II (Figure 1). These two
observables are defined next.

Observable electric potential
The observable electric potential 1 measured at the terminals of probes Z at the temperature T

is closely related to the distribution of the electrochemical potential g, of the electrons along the
conductor.[2-4]

d(f@./e) = S,dT - dy, €)
Then the second transport equation, equation (2), can be transformed to

dy dr 1
—=(S, =Sy )—+—1. 4
i (z X) I +GA “4)

When the probes are of the same material as the conductor, that is Z = X, equation (4) simplifies
to dy =IdR, where dR =dx/0A is the electric resistance of the element dx of conductor X. That is,

when Z=X the observable electric potential difference measures the ohmic drop independently of the
actual temperature distribution in the conductor.

Energy balance
Under steady-state conditions, and for the wire geometry here considered, the energy balance in
the wire between two cross-sections I and II is presented as J;} —J;, = J o> Where J,, is the heat flux that

laterally departs between the sections I and II from the wire to the surroundings (Figure 1). From the
result J) —J}, =J o and equation (1) we obtain

A(KA d—T) + 1A - IA(&) =J,, (5)
dx e

which can be used to evaluate the Peltier and Thomson coefficients.



Single wire
When [ =0, from equation (4) we have

JA
SZ_SX=(&TI£) : : (6)
T!,1=0

This expression is commonly used to evaluate S, - Sx. Note that only differences can be determined but

not their absolute values. In these measurements four leads are attached to the sample in order to provide
the values of Ay, T'and T".

To evaluate the Thomson coefficient 7 =dz/dT -S we consider two sections I and II in a
conductor X at different temperatures 7' =T" (